MINISTRY OF EDUCATION AND SCIENCE OF THE REPUBLIC OF KAZAKHSTAN

Kazakh National Research Technical University named after K.I. Satbayev

Institute of Architecture and construction named after T.K. Bassenov

Department "Construction and construction materials"

Plant for the production of large-sized reinforced concrete products for bridge structures with a capacity of 70000 m³ per year

EXPLANATORY NOTE for diploma project

Specialty 5B073000 - Production of building materials, products and structures

Almaty, 2020 y.

MINISTRY OF EDUCATION AND SCIENCE OF THE REPUBLIC OF KAZAKHSTAN

Kazakh National Research Technical University named after K.I. Satbayev

Institute of Architecture and construction named after T.K. Bassenov

Almaty, 2020 y

MINISTRY OF EDUCATION AND SCIENCE OF THE REPUBLIC OF KAZAKHSTAN

Kazakh National Research Technical University named after K.I. Satbayev

Institute of Architecture and construction named after T.K. Bassenov

Department "Construction and construction materials"

5B073000 – Production of building materials, products and structures

APPROVED BY

Head of Department of «CaCM» D.Tech.Sc., Professor Akmalaiuly K. « 27 » 01 2020 y.

ASSIGNMENT for the implementation of the diploma project

For student Zhanaidarova Maiya

Theme: Plant for the production of large-sized reinforced concrete products for bridge structures with a capacity of 70000 m³ per year

Approved by order of the Rector of the University №762-b from «27» 012020 y.Delivery of finished work«31» May 2020 y.Input data for the diploma project: task for the diploma project, raw materials,construction area

The list of issues to be developed in the diploma project: a)technological part b)calculation part c)process automation issues d)construction part e)issues of product quality control e)health and safety issues g)development cost-benefit calculation List of graphic material: 6 drawings presented

Recommended main literature: from 24 titles

SCHEDULE Diploma project preparation

Names of sections, list of issues under	Deadline for submission to Notes
development	the scientific supervisor
Technological (technological scheme and its	27 01 2020 25 05 2020
description)	27.01.2020 - 23.03.2020
Heat engineering (calculation of heat	
· · · · ·	27.01.2020 - 25.05.2020
engineering equipment)	
Architectural and construction (design solution	
	27.01.2020 - 25.05.2020
of the main production hall)	
Automation and automation (automation of	
	-27.01.2020 - 25.05.2020
technological processes)	
Technical-economic (calculation of main	
	27.01.2020 - 25.05.2020
technical-economic indicators)	
Occupational health and safety (health and	
	27.01.2020 - 25.05.2020
safety issues)	

Signatures

of the consultants and the compliance officer on the completed diploma project, indicating the sections of the project that relate to them

Section names	Consultants	Date	Signature
	Full Name (degree)	of signature	-
Technological part	Kuatbayeva T.K.	25 05 2020	4-
	D.Tech.Sc., Professor	23.03.2020	07
Thermotechnical part	Kuatbayeva T.K.	25 05 2020	
	D.Tech.Sc., Professor	23.03.2020	\mathcal{O}_{3}
Architectural and construction part	Bek A.A. (M.Tech.Sc.,	25 05 2020	R
	assistant)	23.03.2020	JDek.
Economic part	Kuatbayeva T.K.	25 05 2020	
	D.Tech.Sc., Professor	23.03.2020	03
Automation	Kuatbayeva T.K.	25 05 2020	1-
	D.Tech.Sc., Professor	23.03.2020	(1-3
Occupational safety and health	Kuatbayeva T.K.	25.05.2020	4-
	D.Tech.Sc., Professor	25.05.2020	03
Normocontroller	Bek A.A. (M.Tech.Sc.,	25 05 2020	Ban
	assistant)	23.03.2020	Joch

Scientific supervisor

The task was accepted by the student

Kuatbayeva T.K.

___ Zhanaidarova M.M.

Date

	«	25 »	05	2020 y.
--	---	------	----	---------

АҢДАТПА

Диссертация тақырыбы: «Қуаттылығы жылына 70000 м³ көпір құрылымдары үшін ірі көлемді темірбетон бұымдарын өндіретін зауыт».

Кәсіпорынның дамыған бас жоспары, технологиялық карталар, техникалық және экономикалық көрсеткіштер, өнімдердің ауқымы, шикізаттың сипаттамалары келтірілген.

Зауыт толығымен автоматтандырылған, 8 сағаттың 2 ауысымында жұмыс істейді. Жұмыс үшін қолайлы жағдайлар сақталады. Зауытты салу және пайдалану көпір құрылымдары үшін ірі көлемді темірбетон бұымдарын маңызды болып табылады.

АННОТАЦИЯ

Дипломная работа выполнена согласно темы: «Завод по производству большеразмерных железобетонных изделий для мостовых сооружений мощностью 70000 м³ в год».

Разработанный генплан предприятия, технологическая карта, техникоэкономические показатели, номенклатура выпускаемых изделий, характеристики исходного сырья представлены в приложениях.

Завод полностью автоматизирован, работает в 2 смены по 8 часов. Благоприятные условия для работы соблюдаются. Строительство и эксплуатация завода по производству большеразмерных железобетонных изделий для мостовых сооружений является актуальным.

ABSTRACT

The thesis is made according to the theme: «Plant for the production of largesized reinforced concrete products for bridge structures with a capacity of 70000 m³ per year».

The developed general plan of the enterprise, the technological map, technical and economic indicators, the range of products, the characteristics of the feedstock are presented in the applications.

The plant is fully automated, working in 2 shifts of 8 hours. Favorable conditions for work are respected. Construction and operation of the plant according to production of large-sized reinforced concrete products for bridge structures is relevant.

CONTENTS

INTRODUCTION	7
Technological part	8
Thermotechnical part	25
Architectural and construction part	31
Automation of technological processes	35
Economic part	37
Technical-economic part	38
Occupational Health and Safety	39
Conclusion 1 7 2 4	40
List of references	41
Annex A	
Annex B	
Annex C	
Annex D	
Annex E	

INTRODUCTION

At present, modern construction widely uses products and designs for various purposes, different in type of raw materials, production technology in the prefabricated and monolithic construction of buildings and structures.

In work the general principles of designing of the enterprise on manufacture of large-sized ferro-concrete products for bridge constructions by capacity $70000 m^3$ a year are shined, features of designing of technological process both the basic, and auxiliary manufactures are stated, design workings out of the enterprises at release of various kinds of production are resulted.

Concrete is one of the oldest building materials. However, use of concrete and R/W for mass building has begun only from second half of 19th century, after reception and the organisation of industrial release portland cement which has become the basic binding substance for concrete and R/W designs and products.

Today one of the most promising structural materials is steel-fiber concrete. It is a fine-grained concrete, which is reinforced with steel fibers (fibers), evenly distributed over its cross section. Of considerable interest is the combined reinforcement with steel fibers, usually prestressed reinforcement.

The essence of steel-fiber concrete is that the steel fibers introduced into the concrete mixture contribute to improving the work of concrete under the influence of various loads. The number of fibers injected into concrete in most cases varies from 0.5 to 2 percent by volume.

Steel fiber concrete has a number of valuable properties. For example, it has a higher tensile strength than conventional concrete. The introduction of fiber in the concrete in the amount of 1-1.5 percent by volume increases its tensile, bending and compression strength. An important quality of steel-fiber concrete is its increased crack resistance. Due to higher crack resistance steel fiber concrete has increased by 1.5-2 times the frost-, heat- and fire resistance, water resistance.

The most effective use of steel-fiber concrete in structures to which the requirements of increased crack resistance, abrasion resistance, resistance to shock and alternating loads. It is advantageous to use it in monolithic, road and airfield surfaces, bridge span structures, trench floors, retaining walls, spraying layers for tunnel shaft lining and fireproof linings, machine foundations, etc. Among prefabricated constructions we can distinguish thin-walled and ribbed coating slabs, elements of shells and fixed formwork, wall and partition panels, floor slabs, road and airfield slabs, underground utility structures, piles, sleepers.

1 Technological part

1.1 Feasibility study of the construction area

The city of Almaty was chosen for the construction of a plant for the production of large-size reinforced concrete products for bridge constructions with the capacity of 70000 m^3 per year due to a number of the following factors: convenient geographical location, climatic conditions, location of raw material sources, social and economic prospects of the region.

Geographical and climatic parameters, as well as a diagram of the wind roses of the region are presented in Annex A.

When calculating the construction area of the plant, the prospect of production expansion or reconstruction is provided.

The projected enterprise represents a highly automated modern complex of buildings and structures for industrial, auxiliary and administrative and household purposes. Change or expansion of the nomenclature, type and volume of let out products with change of capacity of factory is provided.

Rational zoning of industrial, warehouse, auxiliary and administrative and household zones, availability of zones of an accomplishment, safe movement of railway and motor transport etc. is provided.

The nomenclature of products, annual program of production output, as well as characteristics of source materials are presented in Appendix B.

Nomenclature of manufactured products: BK 12.02-A11, CH 9-30, 1PP 50.18 - 100.AV, BR 200.60.20.

Source materials used:

Reinforced steel - for reinforcing plates: hot-rolled periodical profile in accordance with GOST 5781 class S400; hot-rolled steel S240 grade St3sp; for non stressed fittings: reinforcing bars of S400 and S240 classes according to GOST 5781 and reinforcing bars of S500 class periodic profile according to GOST 6727; for mounting hinge: hot-rolled smooth reinforcing bars of S240 class St3sp and St3ps grades or 10GT grade periodic profile S240 according to GOST 5781. Supplier: Steel Service Kazakhstan.

Cement - Portland cement of M500 grade, PTs 500-D0, GOST 10178-85. Supplier: "Leroy Merlin".

Large aggregate - crushed stone from natural stone of eroded rocks, grades of crushing not lower than 1200 according to GOST 8267-93. Supplier: "RGcom".

Fine aggregate - natural quartz sand, GOST 8736-93. Supplier: quarry.

Additives - plasticizing additive of group I C3 - superplasticizer. Supplier: "Leroy Merlin".

Water - GOST 23732-2011.

Stand (formwork) lubrication - SE-2 grease. Supplier: "Leroy Merlin".

1.2 The composition and mode of operation of the enterprise

Table 1 - The mode of operation of the enterprise

Nominal number of working days per year					
Estimated number of working days per year					
Same for unloading raw materials from railroad transport					
Duration of scheduled stops for repairs per day					
Number of working shifts per day (without heat treatment)	2				
Number of working shifts per day (for heat treatment)	3				
Number of working shifts per day to receive raw materials and supplies					
by railroad transport	3				
by car	2				
Working shift duration, h	8				

1.3 Products of the enterprise

The nomenclature of the concrete products plant for industrial use is as follows: 1) Bridge beam - 8 percent

2) Pile - 7 percent

3) Pavement slabs - 4 percent

4) Side stone - 2 percent

Productivity of the concrete goods plant is 70000 m³/year.

0 7

We find the productivity of the workshops according to the selected nomenclature of the plant (in percent):

1) Bridge beam
2) Pile
3) Pavement slabs
4) Side stone

$$8 + 7 + 4 + 2 = 21$$
 percent
 $70000 \cdot \frac{8}{100} \cdot \frac{100}{21} = 26660 \ m^3 / year$
 $70000 \cdot \frac{7}{100} \cdot \frac{100}{21} = 23300 \ m^3 / year$
 $70000 \cdot \frac{4}{100} \cdot \frac{100}{21} = 13300 \ m^3 / year$
 $70000 \cdot \frac{2}{100} \cdot \frac{100}{21} = 6666 \ m^3 / year$

Table 2 - Type of products	Table 2	2 - Ty	pe of	products
----------------------------	---------	--------	-------	----------

Product	Product	Sizes, mm	Weig	Type and	Consumption		Release m ³ / year	
name	brand		ht,	grade of	for 1 un	it		
			kg	concrete	armat	concr	by	by
					ure,	ete,	given	project.
					kg	m^3		
Bridge	BK 12.02-	11360 x	10300	heavy,	619.2	4.12	28600	33064
beam	A11	1400 x 800		C20 / 25				
Solid square	CH 9-30	9000 x 300	2050	heavy,	36	0.82	25000	28735
drive pile	-	x 300	_	C20 / 25				
Paving slab	1PP 50.18	5000 x 1750	3950	heavy.	66.23	1,58	14300	17875
	- 100.AV	x 180	-	C30 / 35				
Side stone	BR	2000 x 600	600	heavy.	7.18	0.24	7100	9466
	200.60.20	x 200		C25 / 30				
							1	1

1.4 Choice of the type of concrete and its technological parameters

For the selected item, the following applies: steel fiber concrete: plate of roads of class C30 / 37

heavy concrete:

bridge beam class C20 / 25 pile class C20 / 25 side stone class C25 / 30

The mobility and stiffness of the concrete mixture is assigned taking into account the manufacturing technology of the products and the method of concrete compaction.

For a bridge beam, pile, side stone, concrete mixture with a mobility of 1-4 cm is used, for a plate of roads - 4-6 cm.

 Table 3 - Technological parameters of concrete

Product name	Design	OK	Density,	Estimated cement consumption
	the class	mixtures	kg / m ³	per 1 m ³ , kg
	concrete	cm		
Bridge beam	C20 / 25	1-4	2400	364
Solid square	C20 / 25	1-4	2400	370
drive pile				
Paving slab	S30 / 37	4-6	2400	380
Side stone	C25 / 30	1-4	2400	400

1.5 Astringent

Portland cement of the M500 grade is used as a binder for the production of concrete mix for the manufacture of paving slabs, which must comply with the requirements of GOST 10178-85 "Portland cement and slag Portland cement. Technical conditions." The brand of Portland cement for compressive strength at 28 days of age is M 500; active mineral additives are not contained in Portland cement. Designation of Portland cement PC 500-D0.

The mass fraction of magnesium oxide (MgO) in the clinker should not be more than 5 percent. The tensile strength of cement in bending at 28 days of age should be at least 5.9 MPa ($60 \text{ kgF} / \text{cm}^2$), and compressive 49 MPa (500 kgF/cm^2). The beginning of cement setting should occur no earlier than 45 minutes, and the end - no later than 10 hours from the beginning of mixing. The fineness of cement grinding should be such that when sifting a cement sample through a sieve with mesh No. 008 according to GOST 6613-86, at least 85 percent of the mass of the sieved sample passes. The mass fraction of sulfuric anhydride (SO₃) in cement should be in the range from 1.0 to 3.5 percent by weight. The coefficient of variation of the cement tensile strength, calculated according to the test results for the quarter, should not be more than 7 percent.

Product name	e Nar	ne of binder	kg, percent	Density,	Activity,	Mark
		- A		kg/m^3	MPa	
Bridge beam	Por	tland cemen	t 0.28	3100	39.2	M500
Solid square	Por	tland cemen	t 0.28	3100	39.2	M400
drive pile						
Paving slab	Por	tland cemen	t 0.28	3100	39.2	M500
Side stone	Por	tland cemen	t 0.28	3100	49	M500

Table 4 - Binder

1.5 Large aggregate

As coarse aggregate, crushed stone from natural stone of igneous rocks should be used, grades of crushing capacity not lower than 1200 according to GOST 8267-93 "Crushed stone and gravel from dense rocks for construction work. Technical conditions."

Crushed stone should contain lamellar and needle-shaped grains up to 15 percent. Test weight loss for intrusive rocks is 12–16 percent.

The clay content in the lumps should not exceed 0.25 percent.

The content of grains of weak breeds should not exceed 5 percent.

Grade of crushed stone for frost resistance should be at least F200.

The content of dusty and clay particles is not more than 2 percent.

In the production of crushed stone, a radiation hygienic assessment should be made, according to the results of which, they determine the scope. Crushed stone for road construction should be Aeff from 370 to 740 Bq / kg. Crushed stone must be resistant to environmental influences, resistant to the chemical effects of alkali cement.

Product	Placeholder	Bulk	True	Voidness	Grain	composit	ion,
name	name	density,	density	percent	percen	t	
		kg / m 3	kg / m 3		5-10	10-20	20-40
Bridge	granite	1650	2670	0.382	100	-	-
beam	crushed stone						
Solid	granite	1650	2670	0.382	thirty	55	fifteen
square	crushed stone						
drive pile			3 4				
Paving slab	granite	1650	2670	0.382	60	40	-
	crushed stone						
Side stone	granite	1650	2670	0.382	60	40	
	crushed stone						

Table 5 - Coarse aggregate

1.6 Fine aggregate

Quartz sand of a local quarry is used as a fine aggregate. Sand must meet the following requirements of GOST 8736-93 "Sand for construction work. Technical conditions".

Coarse modulus Mk = 2-2.5, medium sand, 2 classes.

The total balance on sieve No. 063 should be from 30 percent to 45 percent. The content of grains with a grain size of 10, 5 and less than 0.16 should not exceed 5 respectively; 15 and 15 percent.

The content of dust and clay particles in the sand, as well as clay in the lumps, should not exceed 3 and 0.5 percent, respectively.

Natural sand during the processing of NaOH (colorimetric test for organic impurities GOST 8555) should not give a color corresponding to or darker than the standard. Sand intended for use as aggregate for concrete should be resistant to the chemical effects of alkali cement. Sand should not contain any foreign contaminants.

Sand should be given a radiation-hygienic assessment. The specific effective activity of natural radionuclides in Aeff sand should be no more than 740 Bk / kg.

Table 6 - Fine aggregate

Draduat nama	Placeholder	Bulk density,	True density,	Fineness	Gr	ain co	mposi	tion, pe	rcent
Product name	name	kg / m ³	kg / m ³	modulus	2,5	1.25	0.63	0.315	0.16
Bridge	Quartz sand	1700	2620	2.05		9	19	40	32
beam					-				
Solid square	Quartz sand	1700	2620	2.05	-	9	19	40	32
drive pile									
Paving slab	Quartz sand	1700	2620	2.05	-	9	19	40	32
Side stone	Quartz sand	1700	2620	2.05	-	9	19	40	32

1934

1.7 Reinforcing steel

For reinforcing plates in accordance with the drawings, it is necessary to use working reinforcement made of hot-rolled bar steel of periodic profile in accordance with GOST 5781 of class S400, for structural fittings and clamps - hot-rolled smooth reinforcement in accordance with GOST 5781 of steel of class S240 of grade St3sp.

As non-tensioning reinforcement, bar reinforcing steel of classes S400 and S240 in accordance with GOST 5781 and reinforcing wire of a periodic profile of class S500 in accordance with GOST 6727 should be used.

Mounting loops should be made of hot-rolled rod smooth reinforcing steel of class S240 of grades St3sp and St3ps or of periodic profile S240 of grade 10GT according to GOST 5781.

Requirements for reinforcing products:

The shape and dimensions of reinforcing products and their position in the slabs must correspond to those indicated in the working drawings.

Welded reinforcing products must meet the requirements of the working drawings and GOST 10922, GOST 23279.

1.8 Steel fiber

Steel fiber obtained from wire, sheet, slab, melt should be used as reinforcing components of steel-fiber-concrete mix.

For the manufacture of road slabs, fiber made of corrosion-resistant steel of the Hareks trademark type SF 01-32, TU 0991-125-46854090-2001, manufactured by AOZT Kurganstalmost using the technology of the German company Vulkan Harex by milling steel slabs from steel grades, should be used St3sp or St3ps according to GOST 380.

Nominal sizes of fiber "Hareks": length - 76 mm; section across the length - width 1.8 mm; average thickness 0.3 mm; twisting relative to the longitudinal axis $70 \pm 30^{\circ}$.

The temporary resistance of the Hareks fiber to a gap should be not less than 600 MPa.

There should be no dirt, rust or grease on the surface of the fiber, except for traces of process grease, dirt and rust. Surface defects (risks, scratches, burrs) are not defective.

Product	Type of	Reinforcement	Ømm	Regulatory	Design
name	reinforcement	class		resistance	resistance
Bridge beam	Wireframes	S500	28	500	450
-			14	500	450
		S240	8	240	218
	Tensile	S1200	8	1200	1000
	fittings	193	4		
	Mounting	S240	12	240	240
	loops				
	Mortgages	Carbon steel			
Solid square	Wireframes	S500	22	500	450
drive pile			sixteen	500	450
-		S240	10	240	218
	Tensile	S1200	12	1200	1000
	fittings				
	Mounting	S240	12	240	218
	loops				
	Mortgages	Steel C235	10	235	230
Paving slab	Wireframes	S400	8	500	450
-		S240	8	240	218
	Mounting				
	loops	S240	12	240	218
	Butt products				
		S240	12	240	218
Side stone	Wireframes	S240	6	240	218
	Mounting	S240	8	240	218
	loops				

The composition of the steel-fiber concrete mixture of steel fiber "Hareks" should be 0.8 percent-1 percent by volume, i.e. approximately $60-80 \text{ kg per 1 m}^3$.

Packaging for fibers should provide protection from moisture during transportation and storage. The mass of fibers in one package should be 15-50 kg.

1.9 Water

Water intended for the preparation of concrete mixtures must meet the requirements of GOST 23732-2011.

The water content of organic surfactants, sugars or phenols should not exceed 10 mg / 1, soluble salts - 3000 mg / 1, ions SO_4^{-2} - 2000 mg / 1, ions Cl^{-} - 600 mg / 1 and suspended particles not more than 200 mg / 1.

The total content of sodium (Na) and potassium (K) ions in water in the composition of soluble salts should be no more than 1000 mg / 1. Water is allowed for use if there are traces of oil products, oils, fats on the surface.

The hydrogen indicator of water (pH) should be at least 4 and not more than 12.5. Oxidation of water should be no more than 15 mg / 1. Water is allowed for use with an odor intensity of not more than 2 points. Water containing foaming agents is suitable for use with a foam resistance of not more than 2 minutes. In places of water intake, the content of coarse impurities in the water should be no more than 4 percent by volume. In addition to these restrictions, there should be no impurities in the water that affect the physico-mechanical characteristics and quality of concrete.

1.10 Additive

In this project, a plasticizing additive of group I C3-superplasticizer is used. This additive increases the mobility of the concrete mixture without compromising strength.

The mobility of the mixture within 45 minutes should not be reduced by more than half.

The plasticizing additive C3 is made on the basis of sodium salts, a condensation product of naphthalenesulfonic acid and formaldehyde. This is a dark brown liquid with a density of $1.15-1.2 \text{ g} / \text{cm}^3$ or a non-caking dark brown powder, readily soluble in water. In case of precipitation, it is recommended to dissolve it before heating or diluting it with hot water and then mix the solution thoroughly.

C3 Aqueous solutions do not change their properties when heated to 85 $^{\circ}$ C, and freezing to -40 $^{\circ}$ C.

Warranty period of storage - 6 months. Fire and explosion proof additive.

1.11 Lubrication

The grease should have good adhesion to the metal, not cause corrosion of the metal and the destruction of concrete, be constant in composition and stable during storage; hold well on a vertical surface. Lubrication should ensure that products are removed from the mold without damage. Also, the lubricant should provide mechanization and automation of its preparation and its application to the surface; be fire safe; Do not create unsanitary conditions in the workshop.

In order to better retain grease on the surface, it is heated to a temperature of 55-60 $^{\circ}$ C. At higher temperatures, the lubricant breaks down. When the temperature is lowered to 35-40 $^{\circ}$ C there is a sharp increase in viscosity, which precludes its application and transport.

Emulsol consists of spindle oil and high polymer synthetic fatty acids. So that during storage the emulsol does not exfoliate, it is necessary to mix it periodically.

1) The lubricant must remain liquid, form an opaque film or turn into a powdery layer after hardening.

2) The lubricant must not have harmful effects.

3) The grease must not dissolve in water.

4) Grease should not cause stains on concrete.

5) Lubrication must not cause corrosion of fittings and molds.

6) The grease should not evaporate when the temperature rises.

7)Lubrication should provide the maximum possible process of mechanization of application.

8) The lubricant must be provided with sufficient adhesion to the surface of the molds, be uniform and constant in its properties.

Emulsion lubricants are divided into two groups: OE-1, PE-1, OE-2 and PE-2. OE-1 and PE-1 is used for lubrication of horizontal surfaces, and OE-2 and PE-2 are used for vertical and horizontal surfaces.

In this case, OE-2 grease is used. For the preparation of grease, paddle mixers SMZH-18 are used.

1.12 Selection and justification of the production method

The main operations in the manufacture of precast concrete are the preparation of concrete mix, molding and hardening of products.

Paving slabs made of steel fiber concrete are manufactured by aggregate-flow technology.

With this production method, the mold and the product are moved using a crane with a technological post.

Aggregate-flow technology is widespread. Its main advantage is versatility and the ability to quickly change lines from the production of one product to the production of another, which does not require large expenses. It is highly cost-effective in mass production.

The number of products with this technology depends on the degree of perfection of the design and vibration equipment, the tightness and condition of the forms, excluding the air tray during vibration and possible leakage of cement milk, as well as the availability of effective lubricants.

The main posts of the aggregate-production line are: molding, consisting of a paver and a vibratory platform; heat and moisture treatment having pit chambers; product forming, cleaning, lubrication, mold assembly and installation of working fittings; surface finishes. In addition to the main posts in the workshop, intermediate warehouses for storing reinforcing bars, nets, frames, backup forms, etc. are provided.

To ensure production flow, a corresponding expansion of the entire technological process into separate operations and especially the molding process is required to reduce its cycle time.

1.13 Calculation of the warehouses of raw materials

Sand storage calculation:

Warehouse capacity by volume:

$$V = \frac{Py \cdot S \cdot S_f \cdot K_f \cdot 1,04}{0,9 \cdot T_W},\tag{1}$$

where P_y – is the annual productivity of the workshop, m³/g;

 S_f – stock of aggregate in stock, days;

S – aggregate consumption per 1 m³ products, kg;

1,04 – coefficient of possible losses;

 T_w – the number of working days per year;

 K_f -coefficient taking into account fractions aggregate composition;

0,9 –warehouse filling ratio.

a) For a bridge beam:

$$V_1 = \frac{33064 \cdot 0.657 \cdot 7 \cdot 1.15 \cdot 1.04}{0.9 \cdot 253} = 920,27 \ m^3$$

b) For a pile:

$$V_2 = \frac{28735 \cdot 0.695 \cdot 7 \cdot 1.15 \cdot 1.04}{0.9 \cdot 253} = 734,28 \ m^3$$

c) For a paving slab:

$$V_3 = \frac{17875 \cdot 0.750 \cdot 7 \cdot 1.15 \cdot 1.04}{0.9 \cdot 253} = 492.9 \ m^3$$

d) For the side stone:

$$V_4 = \frac{9466 \cdot 0.750 \cdot 7 \cdot 1.15 \cdot 1.04}{0.9 \cdot 253} = 261.03 \ m^3$$

Sand storage capacity:

 $V_{sum.store} = V_1 + V_2 + V_3 + V_4 = 920,27+734,28+492,9+261,03=2408,48m^3$ Stack Length:

$$=\frac{V \cdot tg40}{h^2} = \frac{2408,48 \cdot 0,8390996}{9^2} = 24,95 m$$

where 40 ° - the angle of repose of the filler; h is the height of the stack, m

L :

Warehouse Area:

$$F = \frac{2 \cdot L \cdot H}{tg\alpha} = \frac{2 \cdot 25,95 \cdot 9}{tg40} = 535,2 \ m^2$$

Stack width

$$B = \frac{F}{L} = \frac{535,2}{24,95} = 21,45 \ m$$

We accept a stacking-trench warehouse with dimensions of 22x26m. Calculation of the rubble warehouse: a) For a bridge beam:

$$V_{1} = \frac{py \cdot s \cdot s_{f} \cdot k_{f} \cdot 1.04}{0.9 \cdot T_{w}} = \frac{33064 \cdot 1.285 \cdot 7 \cdot 1.05 \cdot 1.04}{0.9 \cdot 253} = 1426,32 \ m^{3}$$

b) For a pile:
$$V_{1} = \frac{28735 \cdot 1.285 \cdot 7 \cdot 1.05 \cdot 1.04}{0.9 \cdot 253} = 1239,57 \ m^{3}$$

c) For a paving slab:
$$V_{3} = \frac{17875 \cdot 1.164 \cdot 7 \cdot 1.05 \cdot 1.04}{0.9 \cdot 253} = 698,48 \ m^{3}$$

d) For the side stone:
$$V_{4} = \frac{9466 \cdot 1.260 \cdot 7 \cdot 1.05 \cdot 1.04}{0.9 \cdot 253} = 698,48 \ m^{3}$$

Crushed stone warehouse volume:
$$V_{5um,store} = V_{1} + V_{2} + V_{3} + V_{4} = 1426,32 + 1239,57 + 698,48 + 400,4= = 3764,77 \ m^{3}$$

Stack length at a height of 10 meters:
$$L = \frac{V \cdot tg40}{h^{2}} = \frac{3764,77 \cdot 0.8390996}{10^{2}} = 31,6 \ m$$

Warehouse Area:
$$F = \frac{2 \cdot L \cdot H}{tga} = \frac{2 \cdot 31.6 \cdot 10}{tg40} = 753,19 \ m^{2}$$

Stack Width:
$$B = \frac{F}{L} = \frac{753.19}{31.6} = 23,8 \ m$$

We accept a stacking-trench warehouse with dimensions of 22x34m.
Distance from the sub-tunnel to the railways:
$$l = \frac{h}{tg18} = \frac{10}{0,325} = 30,76 \ m$$

1.14 Calculation of the warehouses of cement

$$V_{c} = \frac{(\frac{\Sigma P_{y} \cdot C \cdot S_{c} \cdot 1,04}{0,9 \cdot n})}{\rho_{c}}$$

= $(\frac{33064 \cdot 0,37 \cdot 7 \cdot 1,04}{0,9 \cdot 253} + \frac{28735 \cdot 0,37 \cdot 7 \cdot 1,04}{0,9 \cdot 253})$
+ $\frac{17875 \cdot 0,36 \cdot 7 \cdot 1,04}{0,9 \cdot 253} + \frac{9466 \cdot 0,37 \cdot 7 \cdot 1,04}{0,9 \cdot 253}) =$

 $= (391,1 + 339,9 + 205,7 + 111,97) = 1048,67 m^{3}$ where P_y – annual productivity C – average cement consumption per 1 m³ production S_c – stock of cement in the warehouse 1,04 – coefficient of possible losses 0,9 – stock filling ratio n – the number of working days in a year. We accept 6 silos with a capacity of 250 m³.

1.15 Calculation of the warehouses of the reinforcing shop

The area for metal storage is calculated by the formula:

$$A = Q_{24h} \cdot T_k \cdot \frac{k}{m},\tag{2}$$

where Q_{24h} - daily requirement, t;

 T_k - shelf life, days;

k - coefficient taking into account walkways, passages during storage of steel in racks and in closed warehouses (2.5);

m is the mass of steel placed in $1m^2$ warehouse, t/m^2 ;

$$Q = \Sigma m_A \cdot n = \Sigma m_{sf} \cdot n, \tag{3}$$

where m_{sf} – is the mass of reinforcement in one product;

n is the number of products manufactured per day.

$$Q = 534, 7 \cdot 16 + 270, 48 \cdot 137 = 45610, 96 \text{ kg/day} = 45, 61 \text{ t/day}$$

8) S240 Ø12, m=3,2 t/m²

$$Q = 2,1 \cdot 16 + 2,1 \cdot 137 + 2,1 \cdot 144 = 0,6 t/day$$

 $A = 0,6 \cdot 20 \cdot 2,5 \div 3,2 = 9,4 m^{2}$
9) S240 Ø10, m=3,2 t/m²
 $Q = 5 \cdot 144 = 0,7 t/day$
 $A = 0,7 \cdot 20 \cdot 2,5 \div 3,2 = 10,9 m^{2}$
10) C235, m=1,2 t/m²
 $Q = 5 \cdot 144 + 2 \cdot 137 = 0,99 t/day$
 $A = 0,99 \cdot 20 \cdot 2,5 \div 3,2 = 41,25 m^{2}$
The total area of warehouses will be:
 $A_{sum} = \Sigma A =$
 $= 1900,4+59,6+64,2+157,9+20,8+29,7+10,9+9,4+10,9+41,25=2305,05m^{2}$

1.16 Calculation of the warehouses of finished products

We determine the area of the warehouse for storage of finished products: a) For a bridge beam:

$$A_{1} = \frac{Q_{24h} \cdot T_{k} \cdot k_{1} \cdot k_{2}}{Q_{n}} = \frac{130,68 \cdot 10 \cdot 1,5 \cdot 1,3}{1} = 2548,26 m^{2}$$

where Q_{24h} daily performance, m^3 ;

 T_k - storage time at the finished goods warehouse, days;

 k_1 - coefficient taking into account driveways, k_1 =1,5;

 k_2 - coefficient taking into account the type of crane. For overhead crane $k_2 = 1,3$;

 Q_n - norm storing articles for $1 m^2, m^3$.

b) For a pile

$$A_2 = \frac{113,57 \cdot 10 \cdot 1,5 \cdot 1,3}{1} = 2214,7 \ m^2$$

c) For a pavement slab

$$l_3 = \frac{70,65 \cdot 10 \cdot 1,5 \cdot 1,3}{1377,28} = 1377,28 m^2$$

d) For the side stone

$$A_4 = \frac{37,41 \cdot 10 \cdot 1,5 \cdot 1,3}{1} = 729 \ m^2$$

Total area:

 $A_s = A_1 + A_2 + A_3 + A_4 = 2548,26+2214,7+1377,28+729=6869,24m^2$

1.17 Calculation of the number of production lines and equipment

1. Required number of production lines in the workshop:

$$N_{t.l.} = \frac{P_{year}}{P_{year.a.} \cdot K_{e.u.}} = \frac{14300}{19187,52 \cdot 0.97} = 0.8 \approx 1 \text{ line}$$

 $P_{year.a.} = P_{year} \cdot P_{sm} \cdot T_{sm} \cdot N_f \cdot V_i = 253 \cdot 2 \cdot 8 \cdot 3 \cdot 1,58 = 19187,52 \text{ m}^3/\text{year}$ where P_{year} – the productivity of the plant;

 $P_{vear.a}$ – annual output of the aggregate-production line;

 $K_{e,u}$ - utilization rate of equipment of the aggregate-production line.

$$P = 14300 \cdot \frac{1}{0.8} = 17875 \text{m}^3/\text{year}$$

2. Required number of molding machines:

$$N_{f.m.} = \frac{P \cdot T_c}{B_{sft} \cdot n \cdot V_i \cdot K_{i.o}} = \frac{17874 \cdot 0.33}{4048 \cdot 1 \cdot 1.58 \cdot 0.97} = 0.95$$

Accept 1 car.

where T_c – the duration of the molding cycle, T_c =20 min;

 B_{sft} – estimated working time fund, h;

n - the number of simultaneously molded products.

3. Required conditional load capacity of the vibration platform:

 $Q_B = Q_F + Q_C = 3,16 + 3,4 = 6,5 m$

 $Q_B = V_I \cdot M = 1,58 \cdot 2 = 3,16 m$

where Q_F - is the mass of the form;

 Q_C - mass of concrete mix.

$$Q_B = V_I \cdot \rho_C \cdot K_c = 0,96 \cdot 1,58 \cdot 2,49 \cdot 0,9 = 3,4 m$$

where K_c - is the joining coefficient.

We accept the vibroplate SMZH-200.

4. Required paver hopper volume:

$$V_B = K_1 \cdot K_2 \cdot V_I = 1,1 \cdot 1,2 \cdot 1,58 = 2,08 \ m^3$$

where K_1 is the safety factor (1.1 - 1.2);

 K_2 - coefficient taking into account the incomplete filling of the hopper (1.2 -

1.4).

We accept a concrete paver CMZ-166.

5. The geometric dimensions of the TVO cameras:

a) Chamber length

 $L_k = n_1 \cdot l_f + 2l_z + (n_1 - 1) \cdot l_1 = 1 \cdot 5.6 + 0.25 \cdot 2 = 6.1 m$ where l_z — is the gap between the chamber wall and the mold, $l_z=0.25$ m; n_1 — the number of stacks along the length of the chamber, $n_1=1$.

$$l_f = l_u + 2 \cdot \Delta l_f = 5 + 2 \cdot 0.3 = 5.6 m$$

where l_f — is the length of the form, m.

b) Camera width

 $B = n_2 \cdot b_f + 2 \cdot b_3 + (n_2 - 1) \cdot b_2 = 2 \cdot 2,25 + 2 \cdot 0,3 + 0,25 = 5,35 m$ where n_2 - is the number of piles across the width of the chamber, n_2 =2.

$$b_f = b_u + 2 \cdot \Delta b_f = 1,75 + 2 \cdot 0,25 = 2,25 m$$

where $\Delta b_f = 0.25$ m;

 b_f — the width of the form, m.

c) Chamber height

 $H_k = h_f \cdot n + (n-1) \cdot h_2 + h_1 + h_1 == 0,38 \cdot 5 + (5-1) \cdot 0,075 + 0,15 + 0,16 \\= 2,51 m$

 $h_f = h_u + \Delta h_f = 0.18 + 0.2 = 0.38 m$

where h_f - is the height of the form, m;

 $\Delta h_f = 0,2 \text{ m};$

 $h_f=0,075$ m - distance between the shapes in height, m;

n - is the number of cameras along the height of the camera, n = 5;

 $h_1 = 0.5$ m - distance from the top of the form to the bottom of the lid;

 $h_3=0,16$ m - gap between the bottom of the chamber and the shape.

6. Camera load factor

$$K_l = \frac{V_m}{V_k} = \frac{10 \cdot 1,58}{2,51 \cdot 5,35 \cdot 6,1} = 0,19$$

where V_k - is the geometric volume of the inner section.

7. The duration of the full cycle of heat treatment

 $T_{lt} = t_r + t_f + t_{pre} + t_{ht} + t_{iso} + t_{ct} + t_p + t_d + t_z + t_{unload,t} = 0,33 + 6 + 3 + 3 + 2 + 0,33 + 3,3 + 3,3 = 21,62 \text{ h}$

where t_r – rebar time;

t_{lt}-load time;

t_{pre} – the time of preliminary exposure (6 hours);

t_{ht} – heating time (3 hours);

t_{iso}- isothermal exposure time (3 hours);

 t_{ct} – cooling time (2 hours);

t_{unload.t} – unloading time;

 T_{lt} – lapping time.

8. Number of installations

$$N = 1 + \frac{P}{B_r \cdot \Sigma V k.g. \cdot K_{a.k.} \cdot K} = 1 + \frac{17875}{253 \cdot 1,58 \cdot 10 \cdot 1,09 \cdot 0,97} = 5,22$$

where P - is the annual line productivity, m^3 ;

 τ_{year} - annual time fund, days.

$$K_{a.k.} = \frac{24}{T_{sum}} = \frac{24}{21,92} = 1,09$$

Accept 6 steaming cameras.

9. Required number of forms:

$$N_f = m + g_t - 2 + \frac{t_{ht} - z \cdot t_{on}}{\tau} = 4 + 10 - 2 + \frac{14 - 1 \cdot 2}{0.33} = 49$$

where m - is the number of posts on the production line, m^3 ;

 τ_{ht} - heat treatment time.

Accept 49 forms.

2 Thermotechnical part

Thermal treatment of the product (steel-fibre concrete pavement slabs) is carried out in a pitted chamber.

The pit-type chambers are used in aggregate-flow and semi-conveyor technology. Floor, semi-shallow and buried can be manufactured depending on the ground water level. The main constructive disadvantage is the system of product loading. Frequent removal of the lid breaks the tightness of the upper part of the chamber (hydraulic shutter), which leads to "knock-out" steam from the installation. They are made of reinforced concrete or combined.

Maintenance technology consists of the following: forms with products are loaded into the pit chamber. After full loading, the lid closes, the water gates are filled and steam starts to flow. In the process of heating and isothermal ageing, the steam condenses, gives off heat and is removed as condensate through a condensation system. At the end of the shutter speed, the steam is stopped and the steam-air mixture is removed through a channel. The water in the water gates boils and is also removed from the chamber as a steam-air mixture. Air enters the chamber through the freeing gates, which cools the product, heats itself and is also evacuated through a duct. After the products have cooled down, the chamber opens and the products are unloaded. Since the chamber is not a hermetic installation, the air pressure in the chamber is practically maintained. When steam is fed into the chamber, there is air in the chamber [19].

One of the conditions for rational use of steam is the organization of its supply. A circular perforated tube with holes is used as a steam line. Steam from the main steam line is fed into the chamber through the supply line. Adjustment of supply is performed by a valve. From the main steam line, steam is supplied through the supply line to the lower and upper steam line located on opposite sides and equipped with nozzles [19].

To remove air during the lifting period t, the capillaries are equipped with a return pipe with a hydrostatic precipitator and a valve which, as the steam is filled, removes air and prevents the return flow to the chambers.

2.1 Calculation of thermal installations and units

1. The geometric dimensions of the TVO cameras

1.1. Camera length

$$\mathbf{L} = n_1 \cdot l_f + 2l_q + (n_1 - 1) \cdot l_1$$

where l_f —is the length of the form, m.

$$l_f = l_u + 2 \cdot \Delta l_f \tag{4}$$

$$\Delta l_f = 0,3 \text{ m}$$

 $l_f = 5+2 \cdot 0,3 = 5,6 m$

where l_q -is the gap between the chamber wall and the mold, $l_q = 0.25$ m;

 n_1 - number of stacks along the length of the chamber, n_1 =1. L = 1.5.6 + 0.25.2= 6.1 m

1.2. Camera Width

B = $n_2 \cdot b_f + 2 \cdot b_3 + (n_2 - 1) \cdot b_2 = 2 \cdot 2,25 + 2 \cdot 0,3 + 0,25 = 5,35$ m where b_f - is the width of the form, m.

$$b_f = b_u + 2 \cdot \Delta b_f = 1,75 + 2.0,25 = 2,25$$

where $\Delta b_f = 0.25$ m;

 n_2 - number of piles across the width of the chamber, $n_2=2$. 1.3.Camera Height $H_k = h_f \cdot n + h_2 \cdot (n-1) + h_2 + h_3 == 0.38 \cdot 5 + 0.075 \cdot (5-1) + 0.15 + 0.075 \cdot (5-1) + 0.00000 + 0.0000 + 0.0000 + 0.0000 + 0.000$

$$0,16 = 2,51$$
m

where h_f - is the height of the form, m.

$$h_f = h_m + \Delta h_f = 0.18 + 0.2 = 0.38 \text{ m}$$

where $\Delta h_f = 0.2$ m;

 $l_2 = 0,075 \text{ m}$ - distance between forms in height;

n - number of shapes along the height of the chamber, n = 5;

 $h_1 = 0.15$ m - distance from the top of the mold to the bottom of the lid;

 $h_3 = 0.16$ m - gap between the bottom of the chamber and the shape.

2. Number of products in the chamber

 $\mathbf{K} = n_1 \cdot n_2 \cdot n = 1 \cdot 2 \cdot 5 = 10$ unit

3. Volume of material in the chamber

$$V_m = K \cdot V_{fm} = 10 \cdot 1,58 = 15,8 m$$

4. Camera load factor

$$K_z = \frac{Vm}{V_k} = \frac{10 \cdot 1,58}{2,51 \cdot 5,35 \cdot 6,1} = 0,19$$

where V_k - is the geometric volume of the inner section. 5. The duration of a complete heat treatment cycle

 $T_{sum} = t_z + t_{unload} + t_{tbo} = 3,3 + 3,3 + 14 = 20,6 \text{ h}$ where t_{tbo} - TBO time = 14 h;

$$t_{unload}$$
 - unloading time = 3,3 h.

$$_{z}=(\frac{R}{n_{f}})\cdot\tau_{f}=\frac{10}{1}\cdot0.33=3.3\ h$$

6. Number of installations

$$N = 1,1 \cdot \frac{Vyear}{Vk.g} = 1,1 \cdot \frac{17875}{3104,7} = 5,75$$
$$V_{k.g} = V_m \cdot \frac{\tau_{year}}{T_{sum}} = 15,8 \cdot \frac{4048}{20,6} = 3104,7 \ m^3/year$$

where τ_{year} - is the annual time fund, days;

 V_{year} - annual line productivity, m^3 .

Accept 6 steaming chambers.

2.2 Calculation of the need for electricity, steam, compressed air and lubrication

Calculation of the need for compressed air

In the production of precast concrete, compressed air is spent on pneumatic transport, the operation of the equipment of the reinforcing shop, the pneumatic control of concrete mixing equipment and the operation of the equipment of cement warehouses. The need for compressed air for the molding workshop for the production of crane beams is determined for each type of equipment, based on the specific consumption of compressed air specified in the technical specification, unit of time and its pressure.

The calculation of compressed air is determined by the formula:

$$B_{compression} = \Sigma B_i K_{c.unc.c} K_{dc}, \tag{5}$$

where K_{dc} - is demand coefficient;

 $K_{unacc.c}$ - coefficient of unaccounted consumers, 1.2.

Table 8 - Require	d amount o	f water
-------------------	------------	---------

Name of equipment		t	Quantity	Consum	Demand	Air Consumption, m ³		
			of	ption air	coefficie			
			consumers	m ³ /h	nt	hourly	daily	yearly
					K _{dc}			
Paver			1	1	0,1	0,24	1,38	349,14
Air scraper			2	12	0,2	5,76	138,24	34977,72
Spray rod			2	30	0,1	7,2	172,8	43718,4
Total						13,2	312,42	79045,26

$$B_{\text{compression}} = (1 \cdot 0, 1 + 12 \cdot 0, 2 + 30 \cdot 0, 1) \cdot 1, 2 \cdot 2 = 13, 2 (m^3/h)$$

2.3 Energy consumption for technological needs

Reduced installation power:

$$P_n = \sqrt{P \cdot V \cdot P_n} , \, \mathrm{kW}, \tag{6}$$

where P_n -rated installed power, kW;

 $\sqrt{P \cdot V}$ - relative duration of inclusion (percent of working time).

$$P_a = K_{dc} \cdot P_n, \, \mathrm{kW},\tag{7}$$

where P_a - active load, kW;

K- demand coefficient.

$$Q_m = P_a \cdot tg\varphi \quad , \, \mathrm{kW}, \tag{8}$$

where Q_m - reactive load, kW; $tg\varphi$ - power factor.

Electricity consumption for technological needs:

$$W_n = \sqrt{W_a^2 + W_p^2} \quad , \, \mathrm{kW}, \tag{9}$$

where $W_a = P_m \cdot t;$ $W_p = Q_m \cdot t;$

t - is the operating time of the equipment, h. The calculation results bring in the table:

 Table 9 - Electricity consumption

Name of		Qua	a	PV	P_n ,	P_n ,	tgφ	Κ	Max	imum	Electricit	ty consumpt	ion,
equipment		ntit			kW	kW		с	load		kW∙h		
		y of	f						Pm	Qm	W_a	W_p	W_n
		PC							kW	kW		-	
Pavement		1		0.14	42	15.7	1.52	0.	8.4	12.76	15881.6	24124.94	40006.54
crane								2					
Concrete har	nd	1		0.15	20.4	7.9	1.17	0.	6.12	7.16	3186.78	3728.33	4604.69
								3					
Vibrating		1		0.035	149	27.9	1.33	0.	8.37	11.12	4235.2	5626.7	9861.9
platform								3					
Self-propelle	d	2		0.35	7.5	4.44	1.02	0.	1.33	1.36	673	688.2	1361.2
trolley								3					
Amount							23976.	34168.17	55834.2				
							58						

Specific energy consumption:

 $W_y = \frac{55834.2}{17875} = 3,12 \text{ kW} \cdot h$

2.4 Calculation of the needs of steam and lubrication

Calculation of steam for a thermal installation is adopted in accordance with aggregated indicators per unit of processed products. Calculation of steam according to aggregated indicators is carried out according to the scheme:

1. Reveal the volume of products to be processed in a thermal installation.

2. Set the specific steam consumption for the selected settings and accepted processing parameters.

With an average steam consumption of 170 kg per 1 m^3 of concrete, the annual demand for production in a pair will be:

 $B_n = H_{cp} \cdot Q$ year = 170 · 17875 = 3038750 year = 500,45 kg/h Grease requirement:

The lubrication rate of 200 g per 1 m² the developed surface of the form per day: $B_c = H_{avg} \cdot S_{f} \cdot n_f = 0.2 \cdot 11.18 \cdot 44 = 98.384 \text{ kg/day} = 24891.152 \text{ kg/year}$

where S_f – the area of the expanded form, m²;

 n_f – number of products molded per day.

2.5 Water consumption for technological needs

Water consumption for technological needs.

Water in the workshop for the production of road slabs is used to flush forming equipment. The specific consumption of water for these needs is 0.5 liters per m^2 of cultivated area.

Water consumption:

$$B_{tn} = 1, 2 \cdot \Sigma B_i K, \tag{10}$$

where B_{tn} - total hourly water consumption, 1/h;

K- coefficient of unaccounted consumers, K= 1.25;

1,2 - coefficient for unaccounted losses.

		pulon			
Name of aquinment	Quantity units	Specific water consumption, 1			
Name of equipment	Qualitity, ullits	per day	in year		
Pavement	1	75	18975		
Hydraulic shutter	8	720	182160		
		795	201135		

Table 10 - Specific water consumption

Table 11 - Consumption of resources

Tuble 11 Consumption of resources							
Name resource	Units	Consumption					
	measur	in hour	in year				
	ements						
Compressed air	m^3	13,2	79045,26				
Electric power	kW	13.8	55834.2				
Steam	kg	500,45	3038750				
Water	1	33,125	201135				
Grease	kg	6,15	24891,152				
	-						

3 Architectural and construction part

The general plan of the enterprise considers zoning of the territory, blocking of individual premises, individual shops and structures into a smaller number of production units, when fulfilling sanitary and fire design standards.

The adopted technological scheme for the production of products determines the structure of the plant, the composition of the equipment and its placement in production buildings. Single-storey multi-span buildings are used for the production shops of precast concrete plants. One-story shops is determined by a large mass of products, the movement of which is carried out by beam cranes or bridge cranes.

Industrial buildings have a structural scheme with a full frame.

The main elements of the frame are prefabricated reinforced concrete structures: columns, crane beams, trusses, floor slabs. The walls are made of precast concrete panels.

Window frames are made of steel or aluminum frames. Lights of light aeration purpose have a U-shaped profile with a width of 6-12 m.

The reinforcement workshop is located in standard unified spans equipped with a 5-ton overhead crane or two beam cranes.

The concrete mixing plant is located in a multi-story frame building made of prefabricated reinforced concrete elements. An inclined transport gallery adjoins the concrete mixing workshop, which is made of prefabricated reinforced concrete or metal structures with fences made of lightweight panel elements.

The master plan of the plant is a project of the location of buildings and structures, utilities, roads and railways located in accordance with the technological scheme and ensuring the normal functioning of the enterprise (CNaR I-89-80, part II. Design standards. Chapter 89. General plans of industrial enterprises).

The plant is located taking into account the prevailing wind rose. The building site area of the plant is 45-50 percent.

When using railway transport, an in-plant railway network was designed to ensure the supply of raw materials and the shipment of finished products associated with the railway access road.

A ring highway with auxiliary roads and entrances was designed on the territory of the plant. When the layout of the general plan, sanitary and hygienic and fire safety requirements, as well as the conditions of labor protection and environmental protection, are met.

3.1 Plant Design

We design the plant for the production of expanded perlite in accordance with the requirements of CNaR II-99 "General Plans of Industrial Enterprises". The mutual arrangement of buildings and structures is carried out taking into account the emitted harmful substances and wind rose.

Industrial enterprises emitting gas, smoke, dust, noise as a result of their work in relation to the nearest residential area should be located on the leeward side for prevailing winds, determined by the rose of the winds. They must also be separated from the borders of residential areas by sanitary protection zones.

3.2 General plan of the enterprise

The designed factory of concrete products for transport purposes consists of the main and auxiliary workshops.

The main workshops include:

1. Two molding workshops for the production of bridge beams with bench technology. Each workshop has two production lines with a capacity of 8339 m^3 / year.

2. One molding workshop for the production of paving slabs with a capacity of 17875 m 3 / year with one aggregate-flow line.

3. The molding workshop for the production of driven piles of solid square cross section with a productivity of 28735 m^3 / year with one aggregate-flow line.

4. Molding shop for the production of side stones with a capacity of 9466 m^3 / year with one aggregate-flow line.

5. Reinforcing shop for the production of reinforcing products: nets, frames, embedded parts, mounting loops and individual rods. The fittings in the molding workshops come from the reinforcement workshop on self-propelled trolleys. The workshop is located perpendicular to the molding workshops.

6. The concrete mixing plant produces heavy concrete of class C20 / 25, C25 / 30, C30 / 37 for products of a given nomenclature. Concrete mixture is prepared in the concrete mixing workshop and fed through the concrete loading rack to the molding shops.

7. The warehouse of finished products is intended for storage of finished products until they are exported before their export to the consumer. Warehousing is carried out in open areas.

8. Storage of the binder is carried out in silos, from which it enters the BSC using pneumatic conveying.

9. Storage of aggregates is carried out in a stack-trench warehouse, which are equipped with stacked conveyors and unloading machines.

10.On the territory of the plant there is an administrative and housing building, in which there are household premises, laboratories of the Quality Department, administration rooms, etc.

Ancillary production includes:

1. Repair and mechanical workshop, designed for the repair and maintenance of production equipment and vehicles of the enterprise.

2. Compressor, designed to supply compressed air to industrial needs.

3. A boiler room, which serves for heating rooms in the winter, as well as for the production of steam.

4. The transport workshop, representing cars, rail and in-shop transport.

5. The warehouse of fuels and lubricants.

6.Transformer.

7. Fire reservoir.

The specified area of the workshop is $S = 1836 m^2 (18 \times 102 m)$.

The workshop for the production of paving slabs from steel fiber concrete has dimensions 24 x 84 meters. Production facilities are selected depending on the size of the processing lines placed in the workshop, the size of the equipment and the conditions for its placement in compliance with the required driveways and passages.

The main type of industrial building is frame, this is due to the presence in many industrial buildings of large concentrated loads, shocks and shocks from technological and crane equipment.

Reinforced concrete structures are characterized by high durability, incombustibility and low deformability.

Overall dimensions of the building of the main workshop:

1) the step of the columns along the span is 6 meters;

2) the span is set depending on the dimensions of the processing equipment, taking into account passages and driveways of 24 meters;

3) the height of the shop is calculated by the formula:

 $H = H_1 + H_1 = h_1 + h_2 + h_3 + b_1 + b_2 + 500 + 100$

where 500 and 100 - safety standards for the operation of machines and mechanisms;

 h_1 - height of equipment;

 h_2 - height of the element transported by the crane;

 h_3 - length of the sling;

 b_1 and b_2 - dimensions of crane equipment.

H = 3100 + 180 + 1450 + 2400 + 1900 + 500 + 100 = 9630 mm

The crane part of the column:

 $H_1 = h_1 + 500 + h_2 + h_3 + b_1 - 150 - h_b =$

$$= 3100 + 500 + 180 + 1450 + 2400 - 150 - 1000 = 6480 \text{ m}$$

Supercrane part of the column:

 $H_2 = h_b + 150 + b_2 + 100 = 1000 + 150 + 1900 + 100 = 3150 \text{ mm}$

We select the column, taking into account that 1000 mm of the column length is installed in the foundation and that the H_2 columns are not less than the calculated value.

We accept a column from the series KE 01-52 of the brand KD III -36 with a height of H = 10.8 m.

The building houses a bridge crane with a lifting capacity of 20 tons. Crane beams rest on the console of columns. Their length is selected based on the pitch of the columns. A series of crane beams KE-01-50. Considering the crane loading capacity, we select a crane crane beam BKNA 6 - 3t, length 6 meters, weight 4.1 t. Crane beams are not only load-bearing structures, but also serve to give rigidity to the building.

4 Automation of technological processes

The automation scheme is presented in the graphical part of the work.

Description of the main automation scheme -

- 1. Pressure retention by means of a pressure switch;
- 2. Cement level fixing in silos;
- 3. Moisture level fixing in inert material bunkers and fixing the moisture level in the mixer itself;
- 4. Inert material weight fixation;
- 5. Fixing the water weight;
- 6. Additive weight fixation; Additive weight fixation
- 7. Cement weight fixing
- 8. Automatic block shutter closure when parameters are exceeded

Used automated control systems (ACS) - Siemens equipment, in particular: controllers SIMATIC S7-300, CPU central processor modules, signal modules SM, communication processors CP, functional modules FM; controllers OVEN PLC150 [4], ACS "LCD Thermal Control" [5].

4.1 Functional diagram development

The system of automatic control of the process of heat treatment of reinforced concrete in the pit chamber is based on temperature measurement by two sensors TE - platinum resistance thermometers. Sensor signals pass through HK amplifiers. One signal passes through the x(-1) inverter and goes to the adder \sum . The second signal goes directly to the adder, where both signals are added and compared with the set temperature TA. If the sum of the signals meets the set temperature in the TA, then the signals from the HK amplifiers are directly fed to the other adder. From this adder the signal is fed to the x1/2 amplifier. From this amplifier, the signal is fed to the TI display device.

5 Economic part

5.1 Calculation of the selling price of precast concrete structures

The selling price includes cost of production, profit, taxes and duties paid from revenues. The main element of the selling price is cost of production. At formation of the prime cost of production on items of expenses the following grouping of expenses is established:

- basic materials;

- auxiliary materials for technological purposes;
- fuel (heat energy) for technological purposes;
- electric power for technological purposes;
- the basic salary of industrial workers;
- social contributions;

- expenditures on preparation and development of production (for newly developed products);

- general production expenses;
- general economic expenses;
- taxes and contributions attributable to production costs;

- cost of production (for newly developed products); general production expenses; taxes and contributions attributable to production costs;

- non production expenses (costs related to sales of products);
- total cost of production.

6 Technical-economic part

TEP of the projected plant:

- Calculation of investment costs - 101,66 mill.tenge.

Project cost estimates, construction cost estimates, equipment cost estimates, construction cost estimates, investment cost estimates are provided in the annex.

- Estimation of production costs - 14953,2 tenge/m³.

The cost of raw materials per annual output, the cost of water, electricity, steam, monthly wage fund, depreciation charges, cost of production are presented in Annex E.

- Project profitability calculation - 10 percent.

Sales revenue, net payback margin and major TPP are shown in Annex E.

7 Occupational Health and Safety

Ensuring safe, comfortable and convenient operation are developed during the development of the master plan and technology projects, through automation of technical processes, increasing reliability and safety of the units, as well as creating comfortable environmental conditions.

The following harmful production factors on the territory of the plant include the following, with MPC values: dust 7 mg/ m^3 , noise - 70 dB, local vibration - 80 dB, air speed - 0.5 m/s, humidity - 41 percent, lighting - 700 lux, electromagnetic field with an industrial frequency - 50 Hz.

For maintenance of pure air use: installations - dust collectors, removal of toxic substances, automation and mechanization of all processes.

To limit the impact of vibration measures are taken: vibration isolation of units with dynamic loads, a design solution that takes into account the parameters of dynamic effects, the transfer of units to remote control. To determine the force of vibration oscilloscope H-700, vibrometer VEP-4 is used.

To limit the impact of noise the following measures are taken: isolation of noise devices in separate compartments, creation of an isolated cabin with noise-absorbing shields for personnel, installation of noise silencers, installation of vibration units on elastic shock absorbers.

To optimize lighting, artificial and emergency lighting systems are used.

To ensure fire [12], [14], [15] safety it is necessary to have a specific amount of water reserve, primary fire extinguishing means (fire extinguishers) are used.

Calculation of the required water volume for fire [12], [14], [15] extinguishing is $216 m^3/h$.

Water consumption rates for external fire [12], [14], [15] extinguishing are given in Annex 10.

In order to reduce defective products and solid waste, the following measures and equipment are provided:

- Primary crushing of waste by hydraulic excavators with "scissors" or hydraulic hammer;

- Screening and air separation in a two-level screen;

- secondary crushing of large lumps in a rotary crusher;

- Separation into fractions and dispatch to finished product warehouses.

CONCLUSION

In the diploma work the plant for the production of large-size reinforced concrete products for bridge structures with the capacity of 70000 m^3 per year is designed. According to the production technology, the most common and optimal aggregate-flow method of production was adopted, with a number of advantages described in the previous parts. On technical and economic indicators it is obvious high profitability of the plant, low cost of production. The payback period was ..., which is a good indicator. An important role is played by the close location of the raw material base, which significantly affects the cost of products.

Designing of the plant for production of large-size reinforced concrete products for bridge constructions with capacity of 70000 m^3 per year, with perspective expansion or reconstruction, shows correctness and profitability both for the concrete region and for the republic as a whole. The effectiveness of steel and concrete structures can also be achieved by reducing the labor costs for reinforcement work, reducing steel and concrete consumption by reducing the thickness of structures, combining technological operations of concrete mixture preparation and reinforcement, increasing the durability of structures and reducing the cost of running repairs.

Steel and concrete are now actively used in precast construction. But its mass introduction is constrained by the lack of industrial production of commercial fiber.

The undoubted advantage of fiber reinforced concrete has led to a wide interest in its use in the domestic and foreign market for construction and repair. More than 15 countries use fiber as a reinforcing agent, among them the USA, Japan, Canada, Germany, Great Britain, Norway, Austria, New Zealand and others.

In a word, steel-fiber concrete is extremely necessary for a construction complex. Experience of its application shows economic efficiency, benefit and rationality in the manufacture of multi-purpose building structures.

LIST OF REFERENCES

1 CNaR II-99 "Master plans of industrial enterprises".

2 CNaR RK 2.04-01-2001 "Building climatology".

3 CNaR 4.04.91. Collection of the estimated prices for transportation of cargoes for building. Part 1. Ferro-concrete and automobile transportations.

4 CNaR I-89-80, part II. Design standards. Chapter 89. General plans of industrial enterprises.

5 GOST 3107-76 "Cement. Methods of tests. General provisions".

6 GOST 8267 "Crushed stone from natural stone for construction works. Technical specifications".

7 GOST 8267-93 "Crushed stone and gravel from dense rocks for construction works. Technical Specifications".

8 GOST 10268-80 "Heavy concrete. Technical Specifications for aggregates".

9 GOST 6735-85 "Sand for construction works. Methods of testing".

10 GOST 10178-85 "Portland cement and slag cement. Technical specifications".

11 GOST 8736-93 "Sand for construction works. Technical Specifications".

12 GOST 12.1.004-91 Fire safety. General requirements.

13 GOST 12.1.010-76 Explosion Safety. General Requirements.

14 GOST STBT 12.1.010-76 Explosion Safety.

15 GOST 12.1.033-81 (as amended 1983) Fire safety. Terms and definitions.

16 GOST 12.1.044-89 (as amended in 2000) Fire Explosion Safety of Substances and Materials. Nomenclature of indicators and methods of their definition.

17 Eduard Batyanovsky. Technology of manufacture of ferro-concrete products, Vyshaya Shkola, 2019.

18 Reinforced Concrete Structures. The bases of theory, calculation and design. Textbook for students of construction specialties. Under the editorship of Prof. T.M. Pezold and Prof. V.V. Pezolda. Tours, 2003.

19 Handbook of Ventilation and Heating Supply. Methodical guidelines for the implementation of the course project on the theme: "Development of technology for thermal treatment of concrete and reinforced concrete products" on the discipline "Heat Engineering and Heat Engineering Equipment" for students of specialty 70.01.01 "Production of Building Products and Constructions, 2002.

20 P. Safiullin. The basics of automation and automation of processes, 2nd ed., repr. and dop. Textbook for STR, 2018.

21 Reference book and normative material on determination of cargo transportation costs for construction for students of construction specialties, 2003.

22 The methodical recommendations on definition of estimated cost of precast concrete structures for students of construction specialities of all forms of training, 2004.

23 Skripnikova L.V. Course of lectures on labour protection. - Semipalatinsk., Publishing house "Intellect", 2007.

24 O.N.Kulikov.Labor protection in construction. Moscow professional education, 2011.

Web links:

1 http://www.pogodaiklimat.ru/climate/36870.htm

2 <u>http://ebooks.semgu.kz/content.php?cont=d;1360</u>

3https://elticon.ru/asutp/building-industry/novoe-stroitelstvo-i-kompleksnayarekonstrukciya/proizvodstvennye-linii-zavoda-zhbi/

- 4 https://owen.ru/project/asu-termo-kontrol-zhbi
- 5 https://www.sciencedirect.com/topics/engineering/steel-fibre
- 6 https://phys.org/news/2013-11-speedy-analysis-steel-fiber-concrete.html
- 7 https://theconstructor.org/concrete/steel-fiber-reinforced-concrete/4771/
- 8 https://www.sciencedirect.com/science/article/abs/pii/S0950061813001967
- 9 https://phys.org/news/2014-04-steel-fiber-concrete-conventional.html

10 https://www.sahragurlusyk.com/ru/taxonomy/term/6

11 https://www.wikipedia.org

Description of Climate

The place of construction of the plant of industrial reinforced concrete goods is the city of Almaty.

According to SNIP RK 2.04-01-2001 "Building climatology" the territory of Almaty is located in I In climatic subarea, which is characterized by: long hot summer, short winter, lack of strong winds. The wind rose is built according to the data from SNIP "Building climatology". These wind roses are described in the Table A.1.

Figure A.1 - Wind Rose of Almaty [1]

 Table A.1 - Wind direction indicators for July and January [1]

						~	~	L J
Month	Ν	NE	E	SE	S	SW	W	NW
January	9	12	7	23	16	20	7	6
July	5	11	6	45	17	8	4	4

					Climate da	ta for Alma	ty				(P)			
Month		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Year
Record high °C (°F)		18.2 (64.8)	21.9 (71.4)	29.8 (85.6)	33.2 (91.8)	35.8 (96.4)	39.3 (102.7)	41.7 (107.1)	40.5 (104.9)	38.1 (100.6)	31.1 (88.0)	25.4 (77.7)	19.2 (66.6)	41.7 (107.1)
Average high °C (°F)		0.7 (33.3)	2.2 (36.0)	8.7 (47.7)	17.3 (63.1)	22.4 (72.3)	27.5 (81.5)	30.0 (86.0)	29.4 (84.9)	24.2 (75.6)	16.3 (61.3)	8.2 (46.8)	2.3 (36.1)	15.8 (60.4)
Daily mean °C (°F)		-4.7 (23.5)	-3 (27)	3.4 (38.1)	11.4 (52.5)	16.6 (61.9)	21.6 (70.9)	23.8 (74.8)	22.9 (73.2)	17.6 (63.7)	9.9 (49.8)	2.7 (36.9)	-2.8 (27.0)	10.0 (50.0)
Average low °C (°F)		-8.4 (16.9)	-6.9 (19.6)	-1.1 (30.0)	5.9 (42.6)	11.0 (51.8)	15.8 (60.4)	18.0 (64.4)	16.8 (62. 2)	11.5 (52.7)	4.6 (40.3)	-1.3 (29.7)	-6.4 (20.5)	5.0 (41.0)
Record low °C (°F)		-30.1 (-22.2)	-37.7 (-35.9)	-24.8 (-12.6)	-10.9 (12.4)	-7 (19)	2.0 (35.6)	7.3 (45.1)	4.7 (40.5)	-3 (27)	-11.9 (10.6)	-34.1 (-29.4)	-31.8 (-25.2)	-37.7 (-35.9)
Average precipitation mm (inc	ches)	34 (1.3)	42 (1.7)	75 (3.0)	100 (3.9)	106 (4.2)	57 (2.2)	47 (1.9)	30 (1.2)	27 (1.1)	60 (2.4)	56 (2.2)	41 (1.6)	675 (26.7)

Figure A.2 - Almaty climate [12]

Calculation of human resources (Number of staff employed)

The average employment rate is 0.89, which satisfies the current economic conditions.

The total number of workers engaged in mechanized operations (operation of machines and mechanisms in the production process) regardless of the mode of production, must meet the condition:

$$N_m = \frac{1}{B_{sfm}} \Sigma B_{sfw} \cdot M_i \cdot N_i \quad \text{, human;} \tag{B.1}$$

where B_{sfm}, B_{sfw} – estimated fund of working time of the machine and the worker, h;

 M_i – number of machines of the i-th type used in the production process, $M_1 = 1$ item (slipform paver), $M_2 = 1$ item (vibrating platform), M3 = 1 item (bridge crane);

 N_i – number of workers servicing one machine, $N_1 = 1$ human, $N_2 = 1$ human, $N_3 = 1$ human.

The annual fund of machine and worker working time is determined by formulas:

$$B_{sfw} = n_{year}^{w} \cdot t_{sfw}^{24h}, h, \tag{B.2}$$

$$B_{sfm} = n_{year}^{w} \cdot t_{sfm}^{24h}, h, \tag{B.3}$$

where: n_{year}^{w} - number of working days per year, 253;

 t_{sfw}^{24h} , t_{sfm}^{24h} - working time of the worker and the machine per day and hour respectively.

The annual fund of concrete slipform paver time:

$$B_{sfm1} = 253 \cdot 13 = 3289 h$$

The annual fund of vibratory platform time:

$$B_{sfm2} = 253 \cdot 4,24 = 1072,72 h$$

The annual fund of time bridge crane:

$$B_{sfm3} = 253 \cdot 18,8 = 4756,4 h$$

Annual fund of performer's time (including 18 days of vacation):

$$B_{sfw} = 235 \cdot 8 \cdot 2 = 3760 h$$

The total number of workers employed in mechanized operations:

 $N_m = \frac{1}{3760} \cdot (3289 \cdot 1 \cdot 1 + 1072, 72 \cdot 1 \cdot 1 + 4756, 4 \cdot 1 \cdot 1) = 2,42 \ people$

Accept $N_m = 3$ people.

The number of workers engaged in manual operations:

$$N_p = \frac{F_{year} \cdot H_p}{B_{sfw}}, \text{ human}, \tag{B.4}$$

where F_{v} - annual number of moulds.

$$M_{year} = \frac{B_{sf} \cdot 60}{R} = \frac{4048 \cdot 60}{20} = 12144 \ h$$

where H_p - total labor intensity of all manual operations at all posts of the production line; according to the operational schedule H_p = 72,5 human-min = 1,2 human-hour.

$$N_p = \frac{12144 \cdot 1,2}{3760} = 3,87 \ people$$

Accept $N_p = 4$ people.

The total number of people working on the board production line will be: 3 + 4 = 7 people.

Calculating the need for basic manpower for the working shift, we compare the result with the data on the number of workers on the basis of operational schedule of production of the product.

The number of auxiliary workers is taken at a rate of 25-30 percent of the total number of production workers. Then establish the need for engineering and technical workers, based on the technical and technological complexity of production, the number of teams, the number of work shifts.

The final data on the number of workers in the shop we reduce to a statement.

Tuble D.1 Recold	of the number of v	VOIKCIS			
Work category		Number	of shif <mark>ts</mark>	, man	Total in the
		I-shift		II- shift	shop
Basic workers:					
Shape-shifter III		2		2	4
Reinformer III		1		1	2
Reinformer IV		1		1	2
Former III		1		1	2
Crane operator IV		1	1	1	2
Total		6		6	12
Auxiliary workers:			-		
Electrician					
Mechanic		_1		1	2
		1		1	2
Total		2		2	4

Table B.1 - Record of the number of workers

Table continuation

ITR and employees:			
Shop Manager	1		1
Master		1	2
Technologist	1		2
Lab technician	1	1	2
Total	3	2	5
Number of employees			21

The specific labour intensity of the products is calculated using the following 34 formula: У

$$H = \frac{n_{sh} \cdot t_{sh} \cdot N_{sh}}{Q_{sh}} = \frac{2 \cdot 8 \cdot 6}{70,65} = 1,58 \ human - hour \ s/m^3$$

where n_{sh} - number of shifts per day;
 t_{sh} - shift duration;

 N_{sh} - average number of a team of workers; Q_{24h} - production volume per day

	Contro	lled paran	nete	er	DI		34	Who		C -	Test Instruments	Measuring	
Object of control	Name	Nominal value		Longit udinal deviati on	of Cor San ng	ntrol npli	Frequen cy of control	controls or conduct s the tests	ntrol metho (PD symbo	od bl)	Type, brand, ND designation	Mea suring range, error, accuracy class	Control results reporting
1	2		3	4		5	6	7		8	9	10	11
						O	perational	Control					
Form quality	Limit deviations of design parameters are not more than In length In height	8 mm 6 mm		not more than	plai	nt	At least once a year	Master OTK, worksh op technol ogist, worksh op forema n	GOST 25781		Roulette measureme nt 	Measurem ent Limit 0- 20000 mm, 2kl	certificate of acceptance

Table C.1 - Monitoring and evaluation of the quality of performed operations

	Prote ction of welds on	need to be flush protected	r oughne ss of 40	1934		Measure ment in accordan ce with	Micrometer, angle piece GOST	up to 250mm 1kl.	same
	surfaces		allowe d.			25781- 83	5749-77		
Form quality	Cracks and fingerprints deeper than a sink are not permitted on work surfaces.	2 mm 3 <i>cm</i> ² 1 mm		Receivi ng platfor m, worksh op	Q uality Assura nce Master with worksh op technol ogist	GOST 25781	Depth gauge GOST 7661-67 Ruler GOST 427- 75 Depth gauge GOST 7661-67	Measurem ent Limit 0- 100 mm erro r 0,01 mm Measurem ent Limit 0- 300mm Mea surement Limit 0-100 mm 0.01mm	Changeov er log

										Table o	continuation
Forms cleaning quality	Thorough cleaning of concrete residue on all sides				Post demold ing and mold prepara tion	Total permane nt	Shop forema n	Visually GOST 10922- 75			Operation al Control Log
Em ulsion lubrication quality	Viscosity Temperatur e Coat thickness of applied lubricant	11 – 13 s 55 - 60° 0,2 - 0 mm	s C),3	within, not more than	Labora tory	Selective ly once for cooking	Lab technic ian	Technol ogy Card	Measuring with a viscometer GOST 9070-75, stopwatch GOST 5072-79	20-150 s 060 s	Lubricant control log
	Quality of grease application	even lay	er		demold ing station	continuo us	Shop forema n	Visually			
Form assembly	Closing density of the sides				Shop	continuo us Choice one, three times a shift	Shop forema n	Visually Technol ogy card, working drawings			Operation al Control Log

								Table o	continuation
Droduct	Installing the reinforceme nt frame in the working position	according to the drawings	compli ance with	reinfor cing post sampled three times per shift	worksh op forema n	visually	Roulette ZPK 2- 10BNT/1 GOST 7502	0- 10000mm 2 cl	
reinforce ment quality	Installation according to design of mortgage parts and mounting loops	same	same	reinfor three cing times per post shift	worksh op forema n	visually	Roulette ZPK 2- 10BNT/1 GOST 7502	0- 10000mm 2 cl	
Preparatio n of concrete mixture	Checking the bunker closures			Dosing Once a bunker shift	CMU operato r	Inspectio n and surveilla nce			

									Table (commutation
Checking			+-1%	Weighi	At all	CMU	Clock	Weighing	0-400 kg	
the dosing			for	ng	times, if	operato	type	weighers	1 kg	
accuracy			cement	equipm	necessar	r, lab	indicator	with clock		
			, water;	ent for	у		, control	type		
			+-2%	pipette			weights	indicator	0-800 kg	
			for	S				UCC 1-	2 kg	
			aggreg					400/300		
			ates					10-1.0038		
			and					USK - 400-		
			fibres					3/36		
Follow the	1.coarse			Mixer	At all	Operat	Visually			
loading	aggregate	e;			times, if	or, lab,	CNaR			
sequence of	2.Fine				necessar	counter	3.09.01-			
the source	aggregate	e;			у	, lab	85			
materials	3.Cemen	t;				technic				
	4.Water					ian				
	5.Steel									
	fibre									
Mixing	60-70 s			Mixer	At all	CMU	Time	Clock,		
duration of					times, if	operato	measure	stopwatch		
concrete					necessar	r, lab	ment,			
mixture					у		CNaR			
							3 09 01-			

			1							Table o	continuation
Quality of concrete mixture	Mobility of concrete mixture	ОК 4 - ст	- 6	within	noldin g post	Once a shift	Lab technic ian	Measure ment GOST 10181.0 GOST 10181.1	Standard cone GOST 10181.1 Ruler GOST 427 Stopwatch GOS T 5072	0-300 mm 1 mm 0-60 s 1 s	Concrete production control log
	Paving uniformity				moldin g post	sampled three times per shift	Shop forema n	Visually			Concrete production control log
Quality of paving concrete in the mold	Vibration compaction duration	30 - 40	S	compli ance with	moldin g post	con tinuo us	Shop forema n Quality Assura nce Master	time measure ment	Clock, stopwatch	0 – 60 s	Concrete production control log

			1						Table o	continuation
Heat Treatment Mode	TVO duration: pre-existing lift isothermal heating cooling	6 3 3 2		Pithole camera	sampled, once per hour	Lab technic ian	Watchin g the clock; CNaR 3.09.01- 85	Clocks	0-24 h	TVO mode control log
	TVO Temperatur e	60 C	0°	Pithole camera	every hour	Lab technic ian	Tempera ture measure ment	thermomete r GOS T 2823	0100°C error 1%	same
	debugging	Troweli quality	ng	moldin g post	sampled	Shop forema n	Visually			
Finishing quality	Repair with a solution of small cracks, sinks of air pores, cleaning of all mortgaged parts			Finalis ation post	All the time	Shop forema n	Visually			Operation al Control Log

									Table c	ontinuation
Storage of finished products	proper storage control			finishe d goods wareho use	34 continuo us	worksh op forema n	visually, GOST 13015.4- 84, GOST 9818-85			
Acceptance	inspection (per	riodic tes <mark>ti</mark> i	ng)							
Finished goods	Strength, rigidity, crack resistance			finishe d goods wareho use	sampled	Lab, accred center.	Test GOST 8829	Test bench		Conclusi on from the tests

					MS-	0-	
					500 GOST	500 kN	
		1934			8905		
			-		Freez	-18	
					er GOST	±2oC	
					10060		
					Scale	50-	
					s T-5000	5000 g	
					GOS	1 σ	
					T 24104	- 8	
					Sodiu		
					m chloride		
		finish		Sampl	$e \left \begin{array}{c} \text{In children} \\ (5\%) \text{ GOST} \right \right.$		Same
Frost	not	ed	accre	Series	(370) 0001		Same
resistance of F300	lower	once Once	accie	Testing	H233 Water		
l'esistance or 1500	then	week	u	GOST	COST	10	
concrete	tilali	Wareno	center.	10060-	0031	$\pm 2 \circ C$	
		use		95	23732	±20C	
					C a tao n	120	
					Satur	120	
					ation bath	×120	
						×14	
					solution)	0	
					Defro	mm	
					sting bath		
					Frost		
					Resistance		
					Tank for		
					Specimens		

ſ									
			6	1004				Table c	ontinuation
	Waterproofin g	W12		finishe d goods wareho use at least once a year accred center.	Defir n by wet meth GOS' 1273 GOS' 1273	nitio the spot od T 0.0, T 0.5	Water proofing installation GOS T 12730.5 Cylin drical forms Scale s PH- 10 GOS T 24104 Water GOS T 23732	Pmax=1,3 MPa Ø _{inner} =150 h=150mm 100- 10000 g 5g 20±50C	same

Sterilability	0,5 g/ <i>cn</i>	n ²	no more than	19 finishe d goods wareho use	34 at least once a year		Sample testing, abrasion mass loss measure ment GOST 13087	Circle s of abrasion type LKI-2, Scales Techn. GOS T 24104. Trammel caliper GOST 166 - 89. Steel rulers according to GOST 427 - 75. sand according to GOST 6139 - 78.	0-250 mm 0,1 mm 050 cm ±1mm	same
Determinatio n of the specific effective activity of natural radionuclides	370 Bk/	kg	no more than	finishe d goods wareho use	When delivered to producti on or when the supplier changes.	SES	Concrete Mixture Sample Testing G OST 30108- 94	radiometer GOST3010 8	100100 0 Bk/kg error <30% 1050% Cs-137,K- 40, Ra- 226,Th- 232	Protokol

Table continuation

Acce	ptance inspectio	on (accept	anc	e test)	1 9	34					
	Class of concrete for compressive strength,	C30/37		at least	moldin g post	every batch	lab	Testing of GOST 10180, GOST18 105 cube samples	Forms 2FK,3FK Pres s PSU-125	15x15x15 cm 01250 kN, error 1%	Test Log of Concrete and Concrete Mixtures
Concrete quality control, products	Concrete's compressive strength	70%		at least	same	selective ly, once every five months	lab technic ian	GOST10 180, GOST18 150 cube testing GOST13 015-86	Forms 2FK, 3FK Press PSU- 125	15x15x15 cm 01250 kN, error 1%	Test Log of Concrete and Concrete Mixtures

										Table co	ontinuation
Precision manufactu ring	Deviation of sizes from design	length:±5 mm wi h: ±5mm thi kness: ± mm	5 dt ic ±3	no more than	19 Finishi ng post	Ea ch batch (5 pcs. for a batch size up to 25 pcs., if more, 8 pcs.)	master	Measure ment GOST 26433.0, G OST 26433.1	roulette GOST 7502	010 m ±1 mm	acceptanc e log
	Deviation from the straightness of the front surface profile	2m m	n	no more than	Finishi ng post	Each batch (5 pcs. for a batch size up to 25 pcs., if more, 8 pcs.)	master	Measure ment GOST 26433.0, GOST26 433.1	Ruler SHD GOST 8026 Metal ruler GOST 427	0-1000 mm 1cl 0-300mm, 1mm	acceptanc e log
	welded joint strength				Armatu re Shop	Each batch	Control ler	Testing of Welded Joints GOST 10922	Breaking machine UMM-100	0100 kN	same

	Deviation of									
	the thickness of the protective layer of concrete to thereinforce ment	Thickness of protective layer 25mm	+10m m 3mm	Formin g post	Each batch	master	GOST 17625 GOST 22904	IZS-10N TU-25- 06.1885-79	5-30 mm 10-60 mm ±10%	sa me
	Deviation of position of steel mortgages from the designed one, not more.		±5	same	same	same	GOST 13015.0 measure ment	Measuring with roulette 3PK2- 20BNT/1 GOST1750 2	Measureme nt limit 20 m 2cl	same
Surface quality and product appearanc e	Compliance with the requirements for the specified categories of surfaces	A6, A7	not more than the values specifi ed in Table 3 GOST 13015. 0	Finishi ng post	same	master	Sink, tie rod and influx measure ment GOST 9818, GOST 13015.0, 26433.0, 26433.1	Range metal GOST 427- 75, depth gauge GOST 166- 90	0-1000mm ±1mm 0-150mm ±0,1mm	same

								Table c	ontinuation
Cracks in the concrete	are not allowed	e xcept for shrinka ge and other technol ogical widths not exceedi ng 0.1mm	19 Finishi ng post	34 same	same	De terminati on of the presence , width and length of cracks GOST 26433.0, GOST 26433.1	Probe set no. 2, GOST166- 90	0,02- 0,5mm 2cl. exact	same
Stains on the surface	grease and rust spots are not allowed		same	every item	same	visual evaluatio n			
Labeling quality	Consisten cy of the brand to the working drawings, correct applicatio n		Finishe d product wareho use	continuo us	test master, lab technic ian	visually GOST 28042, GOST 13015.2			

Name of	Type and	The name	Measure	Accura	Controlled parameters
measuring and testing	brand	of the	ment	cy class	
instruments	designatio	dock. On	Limit	(divisio	
	n	means		n price)	
Vibro platform	SMZH-	TU22-			Moulding, stiffness
laboratory	539	5735-82			
Compression	MS-500	GOST	500 kN	1%	Determination of the
Machine		8905-82			strength of crushed
		G OO T	1000		stone
Test Machine	MII-100	GOST	1000		Bending strength
		8905-82	kg/cm ²		
Breaking Machine	UMM-	GOST/85	0100		Strength and
	100	3-84	KN		mechanical
					characteristics of
	170 101		5.00	100/	reinforcement
Concrete Protection	IZS-10N	TU-25-	5-30 mm	±10%	Thickness of
Layer Meter		06.1885-79	10-60		protective layer
			mm		profile obliqueity, not
D 1	CLID	COOT	0.0000	0.1	flatness
Ruler	SHD	GOST	0-2000	2 Cl.	profile obliqueity, not
X7.	N/7 046	8026-75	20.150		Tlatness
Viscometer	VZ-246	GOST 1075-75	20-150 s		Lubricant viscosity
	TT	1975-75	0.10000	10/	T (
Inermometer	11	GOST	0-100°C	1%	Temperature
TT (2823-75	0.14 11	0.1 11	Measurements
pH meter	LPK-01		0-14 pH	0,1 pH	TT 1 (' 1
					Hydrogen water index
	VD 20 C		1-120+1	· · · · · · · · · · · · · · · · · · ·	Table continuation
Veggel for a sline	KP-306		$a=120\pm 1$ $b=200\pm 1$		Content of clay and
vessel for soaking	KP-305		n=300±1		dust particles
Standard cone		COST			Determination of the
Standard cone		GUST 10191 1 91			Determination of the
		10181.1-81			modifity of deta
Trammal	ISH 1	COST	0 125	0.1	Fittings diamotor
Traininei	1511-1	166.00	0-125	0,1	grain size of gravel
		100-90			grain size of graver
					Table continuation
		GOST			Tuble communitie
Freezer		10060	$-18 \pm 10C$		Frost resistance
Cylinder with punch		10000	d-75		Grade by crushed
Cymilder with punch			h=75		stone
Stopwatch		GOST	0 - 60 s	1 s	Time meter
		5072-79	0000		
Laboratory scales		GOST	50 - 1000	0.01 g	Mass of samples
		24104	g 1000	0,015	Lings of sumpros
Scales		GOST	100 -	10	Weight of materials
		13882-68	10000 g	- 0	

Table C.2 - Name of measuring and testing instruments

Drying cabin	net		SNOL-3,5	GOST	0105°		Sample Drying
				13447	С		
Vick's needl	e devi	ce	OGC-1	TU25-06-	0-40 mm	0,5mm	Test setting time for
				602-68			the cement
Vick's Pestle	e Devi	ce	OGC-1	TU25-06-	0-40 mm	0,5mm	Normal density of
				602-68			the cement
Standard fu	innel	with	LOV	TU25-06-70			Bulk density of raw
measuring cy	ylinder	•					materials mats
Molotok Ka	shkaro	va			0-60	0,01	Strength
			1 (021	MPa		Determination
Radiometer			RKP-305	GOST	100-1000	30%	Aeff
			MS	30108	Bk/kg		
Le Chatelier	applia	nce		GOST			True density of
				310.2-76			cement, sand
Roulette			ZPK2-	GOST	0-20000	2 cl	Length, width,
			20BNT/1	17502-89	mm		height
Depth gauge	2			GOST	before	0,01mm	Depth of air pore
				7661-67	100mm		shells
Lupa			LI-4-10	GOST	less than	0,1 mm	Sink depths, cracks
				25706-83	15mm		
Corner			UP-2-250	GOST	less than	1cl	rib cages
				3749-74	250		
Stylus set				GOST 166-	0,020,	2cl	crack opening
				90	5mm		width

Table C.3 - Basic lab equipment list

Water consumption rates for external firefighting

Calculation of water consumption for fire extinguishing [2].

Useful capacity for external fire extinguishing is determined by the formula for 3 hours of fire extinguishing.

$$Q = \frac{q \cdot T \cdot n \cdot 3600}{1000} = \frac{20 \cdot 3 \cdot 3600}{1000} = 216 \text{ , } \text{M}^{3}/\text{H}^{3}$$

where Q - pond volume, m^3/h ;

n - estimated number of fires (for the area up to 150 ha = 1, over 150 ha

- 2 fires);

T - estimated fire extinguishing time, h; T = 3 hours

q - water flow, 1/s; q = 20 1/s.

Cost of electricity

Calculation of selling price for precast concrete structures

Materials cost calculation

The selling price of 1 m^3 of a road plate made of steel-fiber concrete 1PP 50.18 - 100.AV is calculated with the following initial data:

- concrete volume in one product Vb= 1.58 m^3 ; - material consumption per 1 m3 of the structure: cement - 0,36 t; sand -0.576 m^3 ; crushed stone - $0,705 \text{ m}^3$; - valve consumption per one structure: S400 ø6 - 52,8 kg; S240 ø20 - 7,92 kg; S240 ø16 - 4,04 kg; S240 ø10 - 1,24 kg; S500 ø5 - 0,28 kg; - resource consumption per 1 m³ of the structure: water -0.14 m^3 ; heat energy - 0.72 Gcal; electricity - 3.12 kW/h; -construction volume of buildings $V_{heat} = 9$ thous. m³; -shop floor volume V_{pr} = 21369,6 m³; shop floor - single-storey production building with precast concrete frame;

- total heating capacity $V_{heat}^{est} = 4,5 \text{ m}^3$;
- crane heights 7,6 m;
- annual output $P_{year} = 17875 \text{ m}^3$;

- type of heat treatment chamber: produced in pitted chambers;

Determination of the cost of thermal energy

The cost of thermal energy per unit of production is determined by a formula: $C_{h.e.} = n_{h.e.} \cdot V_{h.e.} = 0,009 \cdot 2087,41 = 18,78 \ tenge/m^3$ where n_{h,e_1} – specific energy consumption for heat treatment Gcal/m³; V_{he} – heat cost, tg/Gcal.

Determination of the cost of power energy

The cost of power energy per unit of production is determined by a formula: $C_{e.e.} = n_{e.e} \cdot V_{e.e.} = 3,12 \cdot 16,53 = 51,57 \ tenge/m^3$

where $n_{e.e}$ – specific power consumption, kW/m³; $V_{e.e.}$ – electricity price equal 16,53 tenge/ kW·h.

The cost of thermal energy

С

The cost of thermal energy is determined by a formula:

$$prod_{heat} = n_{wat}^{prod} \cdot \frac{V_{heat}}{C_{vear}} = 16,43 \cdot \frac{17,12}{17875} = 0,0157 \ tenge/m^3$$

where n_{wat}^{prod} -energy consumption for hot water supply of industrial premises, Gcal;

 V_{heat} - cost of energy for heating and hot water supply 17,12 tenge/Gcal, at supply from CHPs C_{heat} .

$$n_{wat}^{prod} = \psi \cdot N_m = 0,747 \cdot 22 = 16,43 \ Gcal/year$$

where ψ - thermal energy rate per person per year, Gcal/(person per year);

 N_m - number of production workers, shop equipment maintenance workers, as well as managers, specialists and employees of the shop, people. $\psi = 0.747$ Gcal/(human-year);

$$N_m = N_{work} + N_{service} + N_m = 12 + 4 + 6 = 22$$
 people

Calculation of general operating expenses

Depreciation of workshop equipment costs

To determine the depreciation charge, the carrying value of the equipment is calculated in advance and represents the sum of the selling prices of the equipment and its delivery and installation costs. The cost of assembling the equipment is 8 percent and the cost of delivery is 6 percent of the selling prices.

Table	E .1	1 -	Dep	preciation	on cha	arge	-									
Equipment		C	Cost, t	enge	Quar	ntit	To	tal	Total		Delive	er	Cost	of	Carryi	n
name					y, un	its	we	ight,	cost,		y cos	sts,	install	atio	g valu	e,
		t		unit			t		tenge		tenge		n, tg		tg	
Concrete						1		-		3		1		25		3
Screeder				200					200		92		6		648	
Bridge cran	e					1	-	-		1		1		13		1
				6700					6700		002		36		9038	
Self-propell	ed					2		- (6		4		53		7
trolley				345					690		01,4		5,2		626,6	
Forms						1			1	1		7		10		1
				300	0				3000		80		40		4820	

Table	E.1 -	Depreciation	charge
I GUIC	L. 1	Depreciation	cincin Sc

The amount of depreciation charges for each item of equipment is determined by a formula:

$$A_{sumi} = N_{ai} \cdot \frac{C_{bi}}{100'},\tag{E.1}$$

where N_{ai} - depreciation rate on i-type equipment, percentage; C_{bi} - book value of i-th equipment, tenge.

Concrete Screeder	3648	13,9	507,07
Bridge crane	19038	5,5	1047,09
Self-propelled trolley	7626,6	12,5	953,3
Forms	14820	24,5	3630,9

Table E.2 - Calculation of depreciation charges for equi
--

Total *A*_{obi}: 6138,36.

$$C_{ob} = \frac{A_{ob}}{P_{year}} = \frac{6138,36}{17875} = 0,34 \text{ tenge/m}^3$$

Depreciation charge on the value of buildings and structures

Depreciation charge on the cost of buildings and constructions within general production expenses includes depreciation charge on the shop floor:

$$S_m = \frac{A_b}{P_{year}},\tag{E.2}$$

where A_b - amount of depreciation deductions for the workshop building, tg/yr; $A_b = C_{vm} \cdot V_{vm} \cdot \frac{N_a}{100} = 4760 \cdot 21369, 6 \cdot \frac{2.5}{100} = 2542982, 4$ where C_{vm} - cost of 1 m³ of workshop construction volume (4760 tg/m³); V_{vm} - construction volume (21369, 6 m³); N_a - depreciation rate for the workshop building is 2.5 percent.

$$A_b = 28.21369, 6.2, 5/100 = 2542982, 4$$
 tenge/year;

The amount of depreciation charges for special constructions A_{ss} for pit, crevice and trapezoidal underground chambers is determined by a formula:

 $A_{ss} = \frac{(Ccham \cdot V\kappa \cdot Hcons + Csteeam \, s. \, Vk \cdot 0.85 \cdot Hchamber + Cinstr \cdot Kk \cdot Hchamber + Csteam \cdot Vk \cdot Hsteam + Ccham \cdot Hchamber)}{100},$

(E.3)

where: $C_{cham} \cdot V_k$ - cost of building part of heat treatment chambers, tg;

 $C_{\text{steam s.}} \cdot V_k$ – cost of the steam supply system, tg;

 C_{vent} · V_k – ventilation system cost, tg;

C_{transm}- cost of the pits for transmitting devices, tg;

 C_{instr} · K_k - cost of instrumentation and automation system device, tg. All data are taken from the calculations by the formula;

H_{cons}, H_{steam.s}, H_{chamber}– depreciation rate of 8.4 percent for the construction part, steam supply system and chamber pits, respectively;

 H_{aut} – the same for KIP and automation systems, equal to 20 percent;

 H_{vent} – the same for the ventilation system, equal to 12.1 percent.. Chamber volume:

$$V_{k} = l_{k} \cdot b_{k} \cdot h_{k} \cdot k_{k} = 2,51 \cdot 5,35 \cdot 6,1 \cdot 6 = 491,48 \text{ m}^{3}$$

$$C_{cham} \cdot V_{\kappa} = 130 \cdot 491,48 = 63892,8 \text{ tenge}$$

$$C_{transm} \cdot V_{\kappa} = 8,4 \cdot 491,48 = 4128,43 \text{ tenge}$$

$$C_{steam} \cdot V_{\kappa} = 0$$

$$C_{steam} \cdot V_{\kappa} = 0$$

$$C_{steam} \cdot k_{\kappa} = 1900 \cdot 6 = 11400 \text{ tenge}$$

$$A_{ss} = \frac{(63892,8 \cdot 8,4 + 4128,43 \cdot 0,85 \cdot 8,4 + 11400 \cdot 20)}{17875} = 7941,76 \text{ tenge/year}$$

Calculation of general economic expenses

The cost of thermal energy

The cost of thermal energy is determined by a formula:

 $S_{heat}^{est} = (n_{heat}^{est} + n_{wat}^{est}) \cdot \frac{C_{heat}}{P_{var}} = (161,42 + 13,45 \cdot \frac{10}{17875}) = 0,098 \ tenge/m^3$ where n_{heat}^{est} - energy consumption for heating general factory premises, Gcal; n_{wat}^{est} - energy consumption for hot water supply of general plant premises, Gcal: C_{heat} - cost of energy for heating and hot water supply, with the supply from CHPs $C_{heat} = 10 \text{ tg/Gcal.}$ $n_{heat}^{est} = \eta \cdot V_{heat}^{est} \cdot t \cdot T = 0,0106 \cdot 4,5 \cdot 18 \cdot 188 = 161,42 \ Gcal/year$ where η - thermal energy rate for heating 1000 m³ of heated volume of the building on 1° C in a day, 0,0106 Gcal/ (1000 m³·°C·day); V_{heat}- heated volume of factory premises (factory management buildings, warehouses), thous.m³; t – indoor air temperature, ${}^{0}C$; T – heating season, day/year; $n_{heat}^{est} = \psi \cdot N_{est} = 0,74 \cdot 18 = 13,45 \ Gcal/year$ where ψ - thermal energy rate per person per year, Gcal/(person); ψ =0,747 Gcal/(man-Year); *N_{est}*- number of general household staff, people; N_{est} =18 people.

Depreciation charges for general plant buildings and structures

Depreciation charges in general business expenses are determined by a formula:

$$C_{est} = \frac{A_{est}}{P_{vear}} = \frac{10395}{17875} = 0,58 \ tg/m^3$$

where A_{est} - amount of depreciation charges for general purpose buildings, tg/year.

The amount of depreciation charge for Aest general plant buildings is determined by a formula:

 $A_{est} = S_{est} \cdot V_{est} \cdot N_{am} \div 100 = 46,2 \cdot 9 \cdot 2,5/100 = 10395 tg/year$

where S_{est} - cost of 1 m³ of construction volume of administrative and utility buildings tg/m³, S_{est} =46,2 tg/m³;

 V_{est} - construction volume of administrative and household buildings, m³; N_{am} - depreciation rate for general factory buildings equal to 2.5 percent.

Determination of technical and economic indicators of production

The definition of technical and economic indicators is based on the previous sections.

Name of indicators	Units of measure	Indicator value
The annual program of the workshop:	m ³	17975
(a) In natural units	mill tenge	305 2804
b) measurement values	mm.tenge	303,2094
Volume of production site	m^3/m^2	8,86
Cost of production	tenge/m ³	14953,2
Profit from product sales	mill.tenge	26,713
Moulding capacity	human·h/m ³	226,1
Shop construction capital investments	mill.tenge	101,66
Profitability of production	percent	10
Endowment	tenge/1 tenge	465,8
One year's output per worker:		
a) In kind	m ³ /human	446,875
b) by value	tenge/human	7617385,5
Consumption of material resources per unit of		
production:		
(a) Electricity	kW·h/m ³	3,12
b) thermal energy	Gcal/ m ³	0,009
c) cement	kg/m ³	0,360
d) sand	kg/m ³	0,750
e) crushed stone	kg/m ³	1,164
f) water	kg/m ³	0,140
g) steel fibre	kg/m ³	0,067

Table E 3 -	Technical	and	economic	indicators	of	production
Table L.J -	reennear	anu	ccononne	marcators	U I	production

Протокол анализа Отчета подобия Научным руководителем

Заявляю, что я ознакомился(-ась) с Полным отчетом подобия, который был сгенерирован Системой выявления и предотвращения плагиата в отношении работы:

Автор: Жанайдарова Майя Мұратқызы

Haзвание: Plant for the production of large-sized reinforced concrete products for bridge structures with a capacity of 70000 m3 per year

Координатор: Тогжан Куатбаева	
1934	
Коэффициент подобия 1 :2,3	
Коэффициент подобия 2:0	
Замена букв:0	
Антервалы:0	
Микропробелы:0	
Белые знаки: 0	

После анализа Отчета подобия констатирую следующее:

- ✓ обнаруженные в работе заимствования являются добросовестными и не обладают признаками плагиата. В связи с чем, признаю работу самостоятельной и допускаю ее к защите;
- □ обнаруженные в работе заимствования не обладают признаками плагиата, но их чрезмерное количество вызывает сомнения в отношении ценности работы по существу и отсутствием самостоятельности ее автора. В связи с чем, работа должна быть вновь отредактирована с целью ограничения заимствований;
- обнаруженные в работе заимствования являются недобросовестными и обладают признаками плагиата, или в ней содержатся преднамеренные искажения текста, указывающие на попытки сокрытия недобросовестных заимствований. В связи с чем, не допускаю работу к защите.

Обоснование:

Работа признается самостоятельной, и студент допускается к защите.

29.05.2020

Дата

Подпись Научного руководителя

Протокол анализа Отчета подобия

заведующего кафедрой / начальника структурного подразделения

Заведующий кафедрой / начальник структурного подразделения заявляет, что ознакомился(-ась) с Полным отчетом подобия, который был сгенерирован Системой выявления и предотвращения плагиата в отношении работы:

Автор: Жанайдарова Майя Мұратқызы
Название : Plant for the production of large-sized reinforced concrete products for bridge structures with a capacity of 70000 m3 per year
Координатор: Тогжан Куатбаева
Коэффициент подобия 1:2,3
Коэффициент подобия 2:0
Замена букв:0
Интервалы:0
Микропробелы:0
Белые знаки:0
После анализа отчета подобия заведующий кафедрой / начальник структурного
подразделения констатирует следующее:

 ✓ обнаруженные в работе заимствования являются добросовестными и не обладают признаками плагиата. В связи с чем, работа признается самостоятельной и допускается к защите;
 □ обнаруженные в работе заимствования не обладают признаками плагиата, но их чрезмерное количество вызывает сомнения в отношении ценности работы по существу и отсутствием самостоятельности ее автора. В связи с чем, работа должна быть вновь отредактирована с целью ограничения заимствований;

□ обнаруженные в работе заимствования являются недобросовестными и обладают признаками плагиата, или в ней содержатся преднамеренные искажения текста, указывающие на попытки сокрытия недобросовестных заимствований. В связи с чем, работа не допускается к защите.

Окончательное решение в отношении допуска к защите, включая обоснование:

Обнаруженные в работе заимствования не об	бладают признаками плагиата
Работа признается самостоятельной, и студе	нт допускается к защите.
29.05.2020	Aprice

Дата

Подпись заведующего кафедрой /

начальника структурного подразделения

ОТЗЫВ

НАУЧНОГО РУКОВОДИТЕЛЯ

дипломную работу_ на (наименование вида работы) Жанайдаровой М. (Ф.И.О. обучающегося) 5В073000 – Производство строительных материалов, изделий и конструкций (шифр и наименование специальности) Teмa: «Plant for the production of large-sized reinforced concrete products for bridge structures with a capacity of 70000 m³ per year» Строительство мостовых сооружений предполагает применение новых конструктивных решений, технологий, материалов. Оптимизировать экономические затраты хорошо помогают эффективные строительные материалы, такие как железобетон. работе Жанайдарова М. указала физические, технические и B экономические преимущества применения железобетона и большепролетных изделий на его основе для мостовых сооружений. Были приведены оптимальные составы железобетона; проанализированы

физико-механические свойства строительных материалов, в зависимости от технологических факторов.

Вышеуказанные сведения свидетельствуют о соответствии выполненной работы современному уровню.

Производство железобетона и большепролетных изделий из него, определяет экономическую эффективность производства._____

Результаты работы могут быть использованы для получения железобетонных большепролетных изделий, в строительстве мостов и мостовых сооружений. Дипломная работа представлена на английском языке.

<u>В целом, представленная работа заслуживает положительной оценки – 95 баллов.</u>

Научный руководитель <u>Доктор технических наук, профессор</u> (должность, уч. степень, звание) <u>Л</u> (подпись) «<u>24</u> » <u>05</u> 2020 г.

						Ka
						Plant for
						for brid
Size	Sheet	Docum	ent №	Signature	Data	
Dev.by		Zhanaidar	ova M.M.	Alto		Architectura
S.superv	/isor	Kuatbay	eva T.K.			
				01		
N. Cont	r.	Bek A.A	۸.	Ber		C
Head of	Dept.	Akmalai	uly K.	Arene		

Exploitation of buildings and structures

Pos.	Name	Notes
1	Forming shop	
2	Forming shop	
3	Forming shop	
4	Forming shop	
5	Forming shop	
6	Concrete-mixing unit	
7	Reinforcement shop	
8	Crushed stone warehouse	
9	Sand storage	
10	Cement storage	
11	Administrative and domestic complex	
12	Finished product warehouse	
13	Fire reservoir	
14	Compressor room	
15	Transformer	
16	Boiler house	
17	Fuel and lubricants warehouse	
18	Garages	
19	Repair and mechanical workshop	
20	Checkpoint	
21	Parking	

Technical and economic indicators of the general plan

Pos.	Name	Unit	Meaning
1	Area of territory	M ²	52503,4
2	Buildings area	M ²	11620
3	Territory development coefficient	%	78,3
4	Used area	M ²	24210,3
5	Length of railroad tracks	М	195
6	Area under the railroad track	M ²	1310
7	Length of roads	М	1320
8	Area of roads and sites	M ²	9560,4
9	Territory Usage Coefficient	%	51,8
10	Warehouse area	M ²	1628
11	Fence length	М	890
12	Greening area	M ²	5303,4

azNRTU - 5B073000.29-03.2020 DP

or the production of large-size reinforced concrete products dge constructions with the capacity of 70000 m3 per year				
	Stage	Sheet	Sheets	
al and construction part	S		6	
General plan	Department of Construction and Building Materials			

Specification of technological equipment

n	Name	Qua	Mass, kg	Notes
4	Bridge Crane	1	28500	Q=20m
85	Self-propelled trolley	2	3000	
	SMZH-151			
85	Concrete Screeder SMZH-166	1	9500	
	Concrete trestle	4		
	Pithole camera	6		
85	Vibroplatform SMZH-200	1	6600	

Specification of reinforced concrete structures

n	Name	Qua	.Mass, kg	Notes
}	Rowderless Farm 4FB-243A-IIIv	15	6500	
52	Column KD III-36	30	10000	
50		24	4100	
55	Column half-timbered KF	8	5700	
=	Coating plate PG4AIIIvt	112	2650	
)	Wall Panel PSZH-2a 1,2x6	48	2100	
)	Wall Panel PSZH-2 1,8x6	48	1400	

KazNRTU - 5B073000.29-03.2020 DP

or the production of large-size reinforced concrete products dge constructions with the capacity of 70000 m3 per year				
al and construction part	Stage	Sheet	Sheets	
	S		6	
nt's plan at 0.000. al drawings 1-1, 2-2	Department of Construction and Building Materials			

Heat Treatment Mode Schedule

Safety Technology

Concrete works may be performed by persons at least 18 years of age, who have been trained in their profession and have been medically certified, after receiving an introductory briefing, workplace safety instruction, and an 8-hour program of training in safe working methods.

When concrete mixes are fed, poured, compacted and heat-treated, vibration, noise, high ambient humidity and other factors have a harmful effect on the body.

Steam dispensers of cassette plants should be fenced off or installed in places that prevent the operator from getting burnt. Steam pipes should be covered with thermal insulation, before starting steam into compartments, check the condition of steam pipes, regulating devices.

A considerable amount of moisture is released during heat treatment. In order to remove this moisture and maintain the air exchange, the moulding shop should have a supply and exhaust ventilation.

Moving mechanisms (slipform paver, bridge crane, etc.) must have a correct acoustic alarm. All electric actuators must have a reliable grounding.

When compacting the concrete mixture, the worker must not come into direct contact with oscillating elements and vibrators.

azNRTU - 5B073000.29-03.2020 DP				
or the production of large-size reinforced concrete products idge constructions with the capacity of 70000 m3 per year				
echnological part	Stage	Sheet	Sheets	
	S		6	
Fechnical map	Department of Construction and Building Materials			

n	Name	Qua.	Mass, kg	Notes			
54	Bridge Crane	1	28500	Q=10T			
	Self-propelled trolley	2	3000				
	SMZH-151						
85	Concrete Screeder SMZH-166	1	9500				
5	Concrete trestle	4					
85	Vibroplatform SMZH-200	1	6600				
	Pithole camera	6					

Specification of technological equipment

KazNRTU - 5B073000.29-03.2020 DP

or the production of large-size reinforced concrete products dge constructions with the capacity of 70000 m3 per year						
	Stage	Sheet	Sheets			
echnological part	S		6			
echnical scheme	Department of Construction and Building Materials					

Circuit diagram

	Marking	Name	Qua.	Notes				
	B1B8	Copper resistance thermometer	8					
	VT1	Transistor KT 503A	1					
	Vd1	LED AL 304B	1					
		Resistors						
	R1R4	MLT 0.25 100 (кОм) +10%	4					
	R5R12	MLT 0.25 3 (KOM) +10%	8					
	R13,R14	MLT 0.25 20 (KOM) +10%	2					
	R15,R16	MLT 0.25 300 (KOM) +10%	2					
	R17,R18	MLT 0.25 3 (KOM) +10%	2					
	R19	MLT 0.5 100 (KOM) +10%	1					
	R20	MLT 0.5 1 (KOM) +10%	1					
	R21	MLT 0.5 100 (KOM) +10%	1					
	R22	MLT 0.25 5.6 (кОм) +10%	1					
+5B	R23	MLT 0.25 1 (кОм) +10%	1					
—0	R24	MLT 0.25 1 (кОм) +10%	1					
	R25,R26	MLT 0.25 2 (KOM) +10%	2					
	R27,R28	MLT 0.25 3 (KOM) +10%	2					
		Capacitors	-					
	C1C4,C10	KM 5 0 015 (nF) +10%	5					
	C5	KM 5 0 1 (nE) +10%	1					
	C6	KM 5 0.47 (nF) +10%	1					
	۲7	KM 5 0.01 (nF) +10%	1					
	C8	KM 5 1 (nF) +10%	1					
	٢9	KM 5 100 (nF) +10%	1					
		Circuits						
	ΠΑΊ ΠΑ5	К140ЧП9	5					
	DA6	K554CA3	1					
	DD1	K572PV2	1					
	DD2DD5	ALS324B	4					
	Marking	Name	Qua.	Notes				
	TE	Platinum resistance thermometer	2					
	хК	Amplifier	2					
	····	Inverter	1					
	S	Summator	2					
	ТА	Targeting device	1					
	ті	Dienlay Davice	1					
KazNRTU - 5B073000.29-03.2020 DP								
Plant for th	e produ	ction of large-size reinforced concrete prod	lucts	5				
for bridge constructions with the capacity of 70000 m3 per year								

StageSheetSheetsAutomationS6Circuit diagramDepartment of Construction and
Building Materials

Name of indicators	Units of measure	Indicator value		Name of indicators	Units of measure	Indicator value
The annual program of the workshop: a) In natural units b) by value Removal of products from the production area Cost of production Profit from product sales Moulding capacity	m ³ mill. tenge m ³ /m ² tenge/m ³ mill. tenge hum-hour/m ³	17875 305,2894 8,86 14953,2 26,713 226,1	34	Main equipment utilization factor: -overhead travelling crane -concrete paver -self-propelled trolley -vibrating platform		0,6 0,38 0,06 0,42
Shop construction capital investments Profitability of production Phono Report One year's output per worker: a) In kind b) by value Consumption of material resources per unit of production:	mill. tenge percent tenge/1tenge m³/hum tenge/hum	101,66 10 465,8 446,875 7617385,5		Employment rate of workers: Former F Shapemaker P1 Shapemaker P2 Reinformer A1 Armature fitter A2		0,9 0,9 0,83 0,84 0,99
a) electricityb) steam technologyc) cement	kW/h Gkal/m³ t/m ³	3,12 0,009 0,360		Labor intensity of product manufacturing Production output on 1st worker per shift	hum-hour/unit unit/hum-hour	1,58 3,07
d) sande) crushed stonef) water	t/m ³ t/m ³ t/m ³	0,750 1,164 0,140		Turbidity of the mold per day Process Cycle Duration	hour	1,09 0,33
g) steel fibre	t/m³	0,067		 The level of mechanization of the production process: a) Level of mechanized labour coverage of workers b) degree of mechanization of labour 	percent percent	28,5 25,7

						KazNRTU - 5B073000.29-03.2020 DP					
						Plant for the production of large-size reinforced concrete products for bridge constructions with the capacity of 70000 m3 per year					
Size	Size Sheet Document №		ent №	Signature	Data		Stage	Sheet	Sheets		
Dev.by Zhanaidarova M.M.		ova M.M.	- Alto		Economic part	S		6			
S.superv	visor	Kuatbaye	eva 1.K.	-di-							
N. Cont	N. Contr. Bek A.A.		Ben		Technical and economic indicator	Department of Construction an Building Materials		struction and			
Head of	Dept.	Akmalai	uly K.	Arene		of production		Dunung Matchais			